INDEX

- Table of Contents
 - Warranty •
- ISO 9001 Certificate •
- **Product Selection Guide**

TABLE OF CONTENTS

Model Number	Model DescriptionPage Number
INDEX	TABLE OF CONTENTSiPRODUCT LIMITED WARRANTYiiISO 9001 CERTIFICATEiiiPRODUCT SELECTION GUIDE1
SECTION 1 1200A 1200A/7618 1220A 1220A/7618	PRESSURE / VACUUM RELIEF VALVESPressure / Vacuum Relief Valves, (vta) vent to atmospherePressure/Vacuum Relief Valve with Flame Arrester, (vta)Pressure / Vacuum Relief Valves with Pipe-Away Feature120Pressure/Vacuum Relief Valve with Flame Arrester, Pipe-Away130Fiberglass Valves160Steam Jacketed Valves
SECTION 2 7618, 7628 7622 7658A 8400A 8500A 8110	FLAME ARRESTER / DETONATION ARRESTERFlame Arrester.200Flame Check.210Flame Arrester, Steam Jacketed.220Detonation Arrester.230Pressure Relief and Flame Trap Assembly.240Flame Trap Assembly.250Back Pressure Check Valve.260
SECTION 3 1260A 2300A 1300A 1360A 5000, 5100 6000, 6100 6200	PRESSURE / VACUUM RELIEF VALVESPressure Relief Valves w/Pipe-Away feature.300Pressure Relief Valves, (vta) vent to atmosphere.310Vacuum Relief Valves, Top Mount.320Vacuum Relief Valves, Side Mount.330Free Vent, Top Mount.350Gauge Hatch.360Gauge Hatch.370
SECTION 4 2000A, 2050A 2100 2400A, 2450A 2500A	EMERGENCY PRESSURE RELIEF VALVESEmergency Pressure Relief Valves, Weight Loaded.400Emergency Pressure Relief Valves, Spring Loaded.410Emergency Pressure Relief Valves, Weight Loaded; Hinged.420Pilot-Operated Emergency Relief Valves.430
SECTION 5	MISCELLANEOUS Test Stands
SECTION 6 1660A Series 1400 Series 1500 Series	PILOT OPERATED VALVESPilot Operated Valves.600Pilot Operated Valves.650Air Operated Valves.670
SECTION 7 3011 Series	BLANKET GAS REGULATORS Blanket Gas Regulators
SECTION 8	TECHNICAL SECTION

i

Groth's Product Limited Warranty terms applies only to purchase orders accepted by Groth Corporation.

- A. Seller warrants that products which are manufactured by Seller, are manufactured in accordance with published specifications and free from defects in materials and/or workmanship for a period of (12) twelve months. Seller, at its option, will repair or replace any products returned intact to the factory, transportation charges prepaid, which Seller, upon inspection, shall determine to be defective in material and/or workmanship. The foregoing shall constitute the sole remedy for any breach of Seller's warranty.
- B. THERE ARE NO UNDERSTANDINGS, AGREEMENTS, REPRESENTATIONS, OR WARRANTIES, EXPRESS OR IMPLIED, (INCLUDING MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE REGARDING PRODUCTS) UNLESS SPECIFIED IN THE SALES CONTRACT. THIS CONTRACT STATES THE ENTIRE OBLIGATION OF SELLER.

Seller makes no warranties, either express or implied, except as provided herein, including without limitation thereof, warranties as to marketability, merchantability, for a particular purpose or use, or against infringement of any patent of products. In no event shall Seller be liable for any direct, incidental or consequential damages of any nature, or losses or expenses resulting from any defective new product or the use of any such product, including any damages for loss of time, inconvenience, or loss of use of any such product.

- **C.** The original Manufacturer shall be solely responsible for the design, development, supply, production, and performance of its products hereunder, and the protection of its trade name or names, if any. It assumes no responsibility, for products modified or changed in any way by its agent or customer. Any such modifications or changes to products sold by Seller hereunder shall make the product limited warranty null and void.
- **D.** The Manufacturer shall be under no obligation to manufacture, sell, or supply or to continue to manufacture, sell or supply any of the Products.

GROTH is committed to the total quality improvement process

Groth Corporation 13650 N. Promenade Blvd. Stafford, TX 77477

800-354-7684

www.grothcorp.com

ii

DET NORSKE VERITAS MANAGEMENT SYSTEM CERTIFICATE

Certificate No. CERT-03385-2001-AQ-HOU-RvA/RAB Rev.1

This is to certify that the Quality System of

GROTH CORPORATION

at

13650 N. Promenade, Stafford, TX 77477 USA

Has been found to conform to Quality Standard:

ISO 9001:1994

This Certificate is valid for the following products/service ranges:

THE DESIGN AND MANUFACTURE OF PRESSURE/VACUUM RELIEF VALVES, FLAME ARRESTERS, EMERGENCY RELIEF VALVES, WASTE GAS BURNERS, PRESSURE RELIEF REGULATORS, SEDIMENT TRAPS, FLAME TRAPS, CHECK VALVES, DRIP TRAPS, AND DETONATION ARRESTERS.

Place and date:

Houston, Texas; 25 March 2002

for the Accredited Unit: Det Norske Veritas Certification, Inc. Houston, Texas, USA DNV Management System Certification The Netherlands

(Rudy Frueboes Management Representative Det Norske Veritas Certification, Inc.

the RvA

This certificate is valid until:

15 December 2003

Initial Certification Date:

14 August 2001

Lack of fulfillment of conditions as set out in the Appendix may render this certificate invalid.

DET NORSKE VERITAS CERTIFICATION. INC., 16340 Park Ten Place, Suite 100, Houston, TX 77084 USA TEL; (281) 721-6600 FAX; (281) 721-6903

SECTION 1

PRESSURE / VACUUM RELIEF VALVES

- 1200A Presure / Vacuum Relief Valves •
- 1200A/7618 Pressure / Vacuum Relief Valves w/ Flame Arrester
 - 1220A Pressure / Vacuum Relief Valves w/Pipe-Away Feature •
- 1220A/7618 Pressure / Vacuum Relief Valve w/Flame Arrester w/Pipe-Away Feature
 - Fiberglass Relief Valves •
 - **Steam Jacketed Valves**

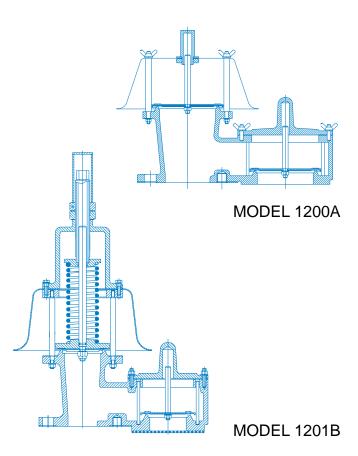
PRESSURE / VACUUM RELIEF VALVE Model 1200A

- Sizes 2" through 12"
- Pressure settings 0.5 oz/in² to 15 PSIG
- Vacuum settings 0.5 oz/in² to 12 PSIG
- Available in aluminum (type 356), carbon steel, stainless steel, fiberglass, and other materials
- Modular construction

PRESSURE / VACUUM RELIEF VALVE

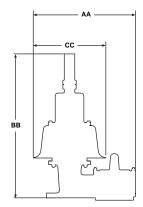
Model 1200A is designed to protect your tank from damage created by over-pressure or excessive vacuum. Costly product evaporation losses due to normal tank "breathing" are greatly reduced. Because the Model 1200A retains toxic vapors, atmospheric contamination is minimized. This helps to provide increased fire protection and safety.

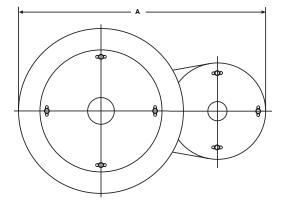
SPECIAL FEATURES

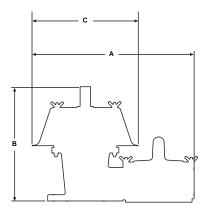

Model 1200A offers Groth's special "cushioned air" seating. Superior performing Teflon^{® 1} seating diaphragms are standard to minimize sticking caused by resinous vapors and atmospheric moisture. The Model 1200A has a self draining housing body and drip rings to protect seating surfaces from condensate and freezing. This design also avoids dangerous pressure or vacuum buildup due to binding or clogging of the valve. Buna-N, Viton[®], and other seating diaphragms can be provided when required. To insure the proper alignment of seating surfaces, there is peripheral guiding and a center stabilizing system.

GROTH, THE CAPABILITY COMPANY

As with all Groth products, every model 1200A is factory inspected and tested to meet your critical requirements and special needs. Inventory is maintained to insure rapid delivery.

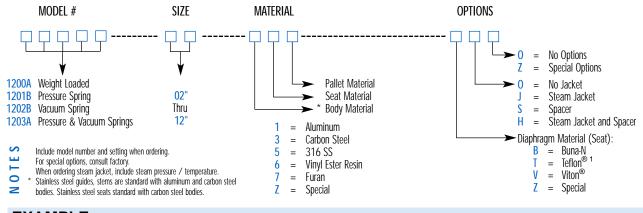



MODEL 1200A



¹ Teflon is a registered trademark of DuPont Corporation.

SPECIFICATIONS


Specifications subject to change without notice. Certified dimensions available upon request

Inlet Flg	Max. Set Pressure Weight Loaded	Max. Set Vacuum. Weight Loaded	Max. Setting Spring Loaded	Min. Setting Weight Loaded	Max. W.P. [†] for Min. Vacuum Setting	Min. Vac. Setting for Max. W.P. [†]	A Length (mm)	B Height (mm)	C Width (mm)	AA Length (mm)	BB Height (mm)	CC Width (mm)	Approx. Ship Wt. Lbs. (Aluminum)
Fig 2" (50 mm) 3" (80 mm) 4" (100 mm) 6" (150 mm) 8" (200 mm) 10" (250 mm)	16 oz/in ² (70.3 gm. /cm ²)	12 oz/in ² (52.7 gm/cm ²) 11 oz/in ² (48.3 gm/cm ²) 11 oz/in ² (48.3 gm/cm ²) 16 oz/in ² (70.3 gm/cm ²) 16 oz/in ² (70.3 gm/cm ²)	15 PSIG SPRING LOADED PRESSURE (1.05 kg. / cm ³) 12 PSIG SPRING LOADED VACUUM (0.84 kg. / cm ³)	*0.5 oz/in ² WEIGHT LOADED (2.20 gm. /sm ³)	See TP	D2 for Settings	(mm) 13 ^{5/8} " (346) 18" (457) 19 ^{3/4} " (501) 27 ^{3/4} " (704) 33 ^{7/8} " (860) 40 ^{7/8} " (1038)	(mm) 13" (330) 13 ^{5/8} " (346) 15 ^{7/8} " (403) 22 ^{1/4} " (565) 26 ^{3/8} " (669) 28 ^{7/8} " (733)	(mm) 9 1/2 " (241) 11 1/2" (292) 13" (330) 19" (482) 23 5/8 " (600) 30 3/4 " (781)	(mm) 13 ^{3/8} " (340) 18 ^{3/8} " (467) 19 ^{1/2} " (495) 27 ^{3/4} " (705) 33 ^{5/8} " (854) 38" (965)	(mm) 19 7/8 " (505) 22 3/4 " (578) 27 1/2 " (699) 37 3/4 " (959) 44 1/2 " (1130) 53" (1346)	(mm) 9 1/2 " (241) 13" (330) 13" (330) 19 1/2 " (495) 23 1/2 " (597) 25 1/2 " (648)	16 (7 kg) 21 (9 kg) 31 (14 kg) 57 (26 kg) 75 (34 kg) 116
(250 mm)		(70.3 gm/cm²) 16 oz/in ² (70.3 gm/cm²)					(1038) 46" (1168)	(733) 32 ^{7/8} " (835)	(781) 36" (914)	(903) 40 ^{1/2} " (1029)	(1340) 55 ^{5/8} ″ (1413)	(646) 25 ^{1/2} " (648)	(53 kg) 157 (71 kg)

¹ W.P. = Working Pressure. ¹ On spring loaded valves, change model number. 150# A.N.S.I. drilling compatibility, F.F. on aluminum and R.F. on carbon steel and stainless steel alloys. Fiberglass dimensions on request. 16 oz/in² set with spacer. S.S. set weights-Consult Factory. *Some sizes require non-ferrous components to achieve 0.5 oz./sq.in. setting.

HOW TO ORDER

For easy ordering, select proper model numbers

EXAMPLE

1 2 0 0 A - 0 2 - 1 1 5 - T 0 0

Indicates a 2" Model 1200A with Aluminum Body and Seat, 316 SS Pallet, Teflon®1 Seat Diaphragm and no other options.

¹ Teflon is a registered trademark of DuPont Corporation

Model 1200A Pressure Relief Capacity

	ressure P _s)	Air Flow Capacity at 100% Over-pressure (Double Set Pressure) 1000 Standard Cubic Feet per Hour at 60° F										
In WC	Oz/Sq In	2″	3″	4″	6″	8″	10″	12″				
0.87	0.50	7.65	16.2	28.9	61.9	108	174	217				
1.00	0.58	8.22	17.4	31.1	66.5	116	187	233				
1.73	1.00	10.8	22.8	40.8	87.2	152	246	305				
2.00	1.16	11.6	24.5	43.8	93.7	164	264	328				
2.60	1.50	13.2	27.8	49.8	106	186	300	373				
3.00	1.73	14.1	29.9	53.4	114	200	322	400				
3.46	2.00	15.2	32.0	57.3	123	214	345	429				
4.00	2.31	16.3	34.4	61.5	131	230	371	460				
6.00	3.47	19.8	41.8	74.7	160	279	450	560				
8.00	4.62	22.7	47.9	85.7	183	320	516	641				
10.0	5.78	25.1	53.1	95.1	203	355	573	712				
12.0	6.93	27.3	57.8	103	221	386	623	774				
15.0	8.66	30.2	63.9	114	244	427	689	856				
20.0	11.6	34.3	72.5	130	277	485	781	971				
25.0	14.4	37.7	79.6	142	305	532	859	1067				
30.0	17.3	40.6	85.7	153	328	573	925	1149				

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f =$ Flowing pressure $P_s =$ Set pressure $% OP = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation	
6" Model 1200A	

set pressure from table 2. Calculate over-pressure 3. Read "C" factor from table

1. Read flow capacity at

4. Calculate flow capacity

- 4 In WC set pressure [P_s]
- 7 In WC flowing pressure [P_f]

Example—To find "C" factor from table:

Read "C" factor for 75% Over-pressure at intersection of row 70 and co	umn 5
"C" factor at 75% OP = 0.87	

	"C" Factor Table												
%0P	0	1	2	3	4	5	6	7	8	9			
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50			
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58			
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65			
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72			
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78			
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84			
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89			
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94			
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00			

Flow = 131,000 SCFH % OP = $[(7 - 4)/4] \times 100 = 75\%$

"C" = 0.87

Flow = 0.87 x 131,000 = 113,970 SCFH

Model 1200A Pressure Relief Capacity

	essure ?)	Air Flow Capacity at 100% Over-pressure (Double Set Pressure) 1000 Normal Cubic Meters per Hour at 0° C									
mm WC	mb	2″	3″	4″	6″	8″	10″	12″			
22	2.16	0.22	0.46	0.82	1.74	3.05	4.91	6.11			
50	4.90	0.32	0.68	1.22	2.62	4.58	7.38	9.17			
75	7.35	0.40	0.83	1.49	3.19	5.58	9.00	11.2			
100	9.80	0.45	0.96	1.72	3.67	6.42	10.4	12.9			
125	12.3	0.51	1.07	1.91	4.09	7.15	11.5	14.3			
150	14.7	0.55	1.17	2.09	4.47	7.81	12.6	15.6			
175	17.2	0.59	1.26	2.25	4.81	8.40	13.5	16.8			
200	19.6	0.63	1.34	2.39	5.12	8.95	14.4	17.9			
225	22.1	0.67	1.41	2.53	5.41	9.46	15.3	18.9			
250	24.5	0.70	1.49	2.66	5.68	9.93	16.0	19.9			
275	27.0	0.73	1.55	2.78	5.94	10.4	16.7	20.8			
300	29.4	0.76	1.62	2.89	6.18	10.8	17.4	21.6			
375	36.8	0.85	1.79	3.20	6.84	12.0	19.3	23.9			
500	49.0	0.96	2.03	3.63	7.76	13.6	21.9	27.2			
625	61.3	1.05	2.23	3.99	8.52	14.9	24.0	29.9			
750	73.5	1.14	2.40	4.29	9.18	16.1	25.9	32.2			

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Example—To find "C" factor from table:

Read "C" factor for 75% Over-pressure at intersection of row 70 and column 5 "C" factor at 75% OP = 0.87

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f = Flowing pressure$ $P_s = Set pressure$ $\% OP = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at 6" Model 1200A 100 mm WC Set Pressure [Ps] 175 mm WC Flowing Pressure [P_f]

- set pressure from table 2. Calculate over-pressure
- 3. Read "C" factor from table
- 4. Calculate flow capacity

"C" Factor Table												
%0P	0	1	2	3	4	5	6	7	8	9		
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50		
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58		
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65		
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72		
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78		
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84		
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89		
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94		
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00		

Flow = 3,670 NCMH% OP = [(175 - 100)/100] x 100 = 75%

```
"C" = 0.87
```

Flow = 0.87 x 3,670 = 3,193 NCMH

Model 1200A Vacuum Relief Capacity

	acuum PJ)	Air Flow Capacity at 100% Over-vacuum (Double Set Vacuum) 1000 Standard Cubic Feet per Hour at 60° F										
In WC	Oz/Sq In	2″	3″	4″	6″	8″	10″	12″				
0.87	0.50	4.70	10.3	16.0	34.7	60.5	91.1	129				
1.00	0.58	5.05	11.0	17.2	37.3	65.0	97.9	138				
1.73	1.00	6.63	14.5	22.6	49.0	85.3	129	182				
2.00	1.16	7.12	15.6	24.2	52.6	91.6	138	195				
2.60	1.50	8.10	17.7	27.6	59.8	104	157	222				
3.00	1.73	8.70	19.0	29.6	64.2	112	169	238				
3.46	2.00	9.33	20.4	31.8	68.9	120	181	256				
4.00	2.31	10.0	21.9	34.1	74.0	129	194	274				
6.00	3.47	12.2	26.7	41.5	90.1	157	237	334				
8.00	4.62	14.0	30.6	47.7	103	180	272	384				
10.0	5.78	15.6	34.0	53.0	115	200	302	427				
12.0	6.93	17.0	37.1	57.8	125	218	329	465				
15.0	8.66	18.8	41.1	64.0	139	242	365	516				
20.0	11.6	21.4	46.8	72.9	158	276	415	587				
25.0	14.4	23.6	51.5	80.3	174	304	457	646				
30.0	17.3	25.4	55.6	86.6	188	327	493	697				

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \, pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \, pressure} \\ \% \, \mathsf{OV} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}})/\mathsf{P}_{\mathsf{s}}\right] \, \textbf{x} \, \, 100 \end{array}$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation	
6" Model 1200A	
4 In WC set vacuum [Ps]	

7 In WC flowing vacuum [Pf]

set vacuum from table 2. Calculate over-vacuum 3. Read "C" factor from table

4. Calculate flow capacity

1. Read flow capacity at

Example—To find "C" factor from table:

Read "C" factor for 75% Over-vacuum at intersection of row 70 and colu	mn 5
"C" factor at 75% OV = 0.87	

	"C" Factor Table												
%0V	0	1	2	3	4	5	6	7	8	9			
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50			
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58			
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65			
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72			
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78			
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84			
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89			
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94			
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00			

Flow = 74,000 SCFH % OV = [(7 - 4)/4] × 100 = 75% "C" = 0.87

Flow = 0.87 x 74,000 = 64,380 SCFH

Model 1200A Vacuum Relief Capacity

	acuum ?_)	Air Flow Capacity at 100% Over-vacuum (Double Set Vacuum) 1000 Normal Cubic Meters per Hour at 0° C								
mm WC	mb	2″	3″	4″	6″	8″	10″	12″		
22	2.16	0.13	0.29	0.45	0.98	1.71	2.58	3.65		
50	4.90	0.20	0.44	0.68	1.48	2.58	3.88	5.48		
75	7.35	0.24	0.53	0.83	1.81	3.15	4.74	6.70		
100	9.80	0.28	0.62	0.96	2.08	3.62	5.46	7.72		
125	12.3	0.31	0.69	1.07	2.32	4.04	6.09	8.60		
150	14.7	0.34	0.75	1.17	2.53	4.41	6.65	9.40		
175	17.2	0.37	0.81	1.26	2.73	4.75	7.16	10.1		
200	19.6	0.39	0.86	1.34	2.91	5.07	7.64	10.8		
225	22.1	0.42	0.91	1.42	3.08	5.36	8.08	11.4		
250	24.5	0.44	0.96	1.49	3.23	5.64	8.49	12.0		
275	27.0	0.46	1.00	1.56	3.38	5.90	8.88	12.6		
300	29.4	0.48	1.04	1.62	3.52	6.14	9.25	13.1		
375	36.8	0.53	1.16	1.80	3.91	6.81	10.3	14.5		
500	49.0	0.60	1.32	2.05	4.45	7.75	11.7	16.5		
625	61.3	0.66	1.45	2.26	4.90	8.54	12.9	18.2		
750	73.5	0.72	1.57	2.44	5.29	9.22	13.9	19.6		

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

%0V

10

20

30

40

50

60

70

80

90

Flow = 2,080 NCMH

0

0.42

0.51

0.59

0.66

0.72

0.78

0.84

0.90

0.95

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

Example—To find "C" factor from table:

1

0.43

0.52

0.59

0.66

0.73

0.79

0.85

0.90

0.95

2

0.44

0.52

0.60

0.67

0.73

0.80

0.85

0.91

0.96

Read "C" factor for 75% Over-vacuum at intersection of row 70 and column 5 "C" factor at 75% OV = 0.87

3

0.45

0.53

0.61

0.68

0.74

0.80

0.86

0.91

0.96

"C" Factor Table

4

0.46

0.54

0.61

0.68

0.75

0.81

0.86

0.92

0.97

5

0.46

0.55

0.62

0.69

0.75

0.81

0.87

0.92

0.97

6

0.47

0.56

0.63

0.70

0.76

0.82

0.88

0.93

0.98

9

0.50

0.58

0.65

0.72

0.78

0.84

0.89

0.94

1.00

8

0.49

0.57

0.64

0.71

0.77

0.83

0.89

0.94

0.99

7

0.48

0.56

0.64

0.70

0.77

0.82

0.88

0.93

0.99

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f = Flowing pressure$ $P_s = Set pressure$ $\% \text{ OV} = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at set vacuum from table 6" Model 1200A 100 mm WC Set Vacuum [Ps] 175 mm WC Flowing Vacuum [P_f]

- 2. Calculate over-vacuum 3. Read "C" factor from table
- 4. Calculate flow capacity
- "C" = 0.87

Flow = $0.87 \times 2,080 = 1,810$ NCMH

 $\% \text{ OV} = [(175 - 100)/100] \times 100 = 75\%$

Model 1201B Pressure Relief Capacity

Set Pressure (P _s)	Air Flow Capacity at 100% Over-pressure (Double Set Pressure) 1000 Standard Cubic Feet per Hour at 60° F							
PSIG	2″	3″	4″	6″	8″	10″	12″	
1.00	28.0	53.4	92.5	210	345	529	739	
2.00	40.3	77.4	134	304	500	767	1070	
3.00	50.2	96.9	168	381	625	960	1340	
4.00	58.8	114	198	448	736	1130	1577	
5.00	66.5	130	225	510	838	1286	1794	
6.00	73.7	144	250	568	932	1431	1997	
7.00	80.4	158	274	622	1022	1568	2188	
8.00	86.7	171	297	674	1107	1699	2371	
9.00	92.8	184	319	724	1189	1825	2546	
10.0	98.6	196	340	772	1267	1945	2714	
11.0	104	208	360	818	1343	2062	2877	
12.0	110	219	380	863	1417	2176	3036	
13.0	115	231	400	907	1489	2286	3189	
14.0	120	241	418	949	1559	2393	3339	
15.0	125	252	437	991	1627	2498	3486	

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f =$ Flowing pressure $P_s =$ Set pressure $% OP = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Read flow capacity at set pressure from table

Calculate over-pressure

Calculate flow capacity

Read "C" factor from table

Example—Flow Capacity Calculation						
6" Model 1201B	2.					
4 PSIG set pressure [P _s]	3.					
7 PSIG flowing pressure [P _f]	4.					

Read "C" factor for **75%** Over-pressure at intersection of row **70** and column **5** "C" factor at 75% OP = 0.83

Example—To find "C" factor from table:

	"C" Factor Table										
%0P	0	1	2	3	4	5	6	7	8	9	
10	•••Consult Factory•••										
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40	
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52	
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62	
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71	
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79	
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86	
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93	
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00	

Flow = 448,000 SCFH % OP = [(7 - 4)/4] x 100 = 75% "C" = 0.83

Flow = 0.83 x 448,000 = 371,840 SCFH

Model 1201B Pressure Relief Capacity

Set Pressure (P _s)	Air Flow Capacity at 100% Over-pressure (Double Set Pressure) 1000 Normal Cubic Meters per Hour at 0° C							
BarG	2″	3″	4″	6″	8″	10″	12″	
0.07	0.82	1.57	2.72	6.16	10.1	15.5	21.7	
0.10	0.99	1.89	3.28	7.45	12.2	18.8	26.2	
0.15	1.23	2.36	4.09	9.28	15.2	23.4	32.6	
0.20	1.43	2.76	4.80	10.9	17.9	27.4	38.3	
0.25	1.62	3.14	5.44	12.3	20.3	31.1	43.4	
0.30	1.79	3.48	6.04	13.7	22.5	34.5	48.2	
0.35	1.95	3.81	6.61	15.0	24.6	37.8	52.7	
0.40	2.10	4.12	7.14	16.2	26.6	40.9	57.0	
0.45	2.25	4.41	7.66	17.4	28.5	43.8	61.1	
0.50	2.39	4.70	8.16	18.5	30.4	46.6	65.1	
0.55	2.52	4.98	8.64	19.6	32.2	49.4	68.9	
0.60	2.65	5.25	9.10	20.6	33.9	52.1	72.6	
0.70	2.89	5.76	10.0	22.7	37.2	57.2	79.7	
0.80	3.13	6.25	10.8	24.6	40.4	62.1	86.5	
0.90	3.35	6.72	11.7	26.5	43.5	66.7	93.1	
1.00	3.56	7.18	12.5	28.3	46.4	71.2	99.4	

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Example—To find "C" factor from table:

Read "C" factor for 75% Over-pressure at intersection of row 70 and column 5 "C" factor at 75% OP = 0.83

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OP} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}}) / \mathsf{P}_{\mathsf{s}} \right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation	1.	Read flow capacity at
		set pressure from table
6" Model 1201B	2.	Calculate over-pressure
0.4 BarG Set Pressure [P _s]	3.	Read "C" factor from table
0.7 BarG Flowing Pressure $[P_f]$	4.	Calculate flow capacity

"C" Factor Table										
%0P	0	1	2	3	4	5	6	7	8	9
10	•••Consult Factory•••									
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00

Flow = 16,200 NCMH

% OP = [(0.7 - 0.4)/0.4] x 100 = 75% "C" = 0.83

Flow = 0.83 x 16,200 = 13,446 NCMH

Model 1202B Vacuum Relief Capacity

Set Vacuum (P _s)	Air Flow Capacity at 100% Over-vacuum (Double Set Vacuum) 1000 Standard Cubic Feet per Hour at 60° F							
PSIG	2″	3″	4″	6″	8″	10″	12″	
1.00	13.8	30.5	52.9	120	197	302	422	
1.10	14.5	31.9	55.4	126	206	316	442	
1.20	15.1	33.2	57.7	131	215	330	460	
1.30	15.7	34.5	59.9	136	223	342	478	
1.40	16.2	35.7	62.0	141	231	355	495	
1.50	16.8	36.9	64.0	145	239	366	511	
1.75	18.0	39.6	68.7	156	256	393	548	
2.00	19.1	42.0	73.0	166	272	417	582	
2.25	20.1	44.3	76.9	174	286	439	613	
2.50	21.0	46.3	80.4	183	300	460	641	
2.75	21.9	48.2	83.7	190	312	478	667	
3.00	22.7	49.9	86.6	197	323	495	691	
3.25	23.4	51.4	89.3	203	333	511	713	
3.50	24.0	52.8	91.8	208	342	525	732	
>3.50		CONSU	LT FACTORY FO	r vacuum set	TINGS GREATE	R THAN 3.5 PS	SI	

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f =$ Flowing pressure $P_s =$ Set pressure $\% OV = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation	1.	Read flow capacity at
		set vacuum from table
6" Model 1202B	2.	Calculate over-vacuum
2 PSIG set vacuum [P _s]	3.	Read "C" factor from table
3.5 PSIG flowing vacuum [P _f]	4.	Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for **75%** Over-vacuum at intersection of row **70** and column **5** "C" factor at 75% OV = 0.83

	"C" Factor Table										
%0V	0	1	2	3	4	5	6	7	8	9	
10		•••Consult Factory•••									
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40	
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52	
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62	
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71	
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79	
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86	
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93	
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00	

Flow = 166,000 SCFH

% OV = [(3.50 - 2.0)/2.0] x 100 = 75%

"C" = 0.83

Flow = 0.83 x 166,000 = 137,780 SCFH

Model 1202B Vacuum Relief Capacity

Set Vacuum (P _s)	Air Flow Capacity at 100% Over-vacuum (Double Set Vacuum) 1000 Normal Cubic Meters per Hour at 0° C								
BarG	2″	3″	4″	6″	8″	10″	12″		
0.07	0.41	0.90	1.55	3.52	5.77	8.87	12.4		
0.10	0.48	1.06	1.83	4.16	6.83	10.5	14.6		
0.11	0.51	1.11	1.92	4.35	7.14	11.0	15.3		
0.12	0.53	1.15	1.99	4.53	7.43	11.4	15.9		
0.13	0.55	1.20	2.07	4.69	7.70	11.8	16.5		
0.14	0.56	1.24	2.14	4.85	7.96	12.2	17.1		
0.15	0.58	1.27	2.20	5.00	8.21	12.6	17.6		
0.16	0.60	1.31	2.27	5.14	8.44	13.0	18.1		
0.17	0.61	1.35	2.33	5.28	8.66	13.3	18.6		
0.18	0.63	1.38	2.38	5.41	8.88	13.6	19.0		
0.19	0.64	1.41	2.44	5.53	9.08	13.9	19.4		
0.20	0.66	1.44	2.49	5.65	9.27	14.2	19.8		
0.22	0.68	1.49	2.58	5.86	9.62	14.8	20.6		
0.24	0.70	1.54	2.67	6.05	9.93	15.2	21.3		
>0.24		CONSU	lt factory fo	r vacuum set	TINGS GREATE	R THAN 0.24 I	BARG		

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f = Flowing pressure$ $P_s = Set pressure$ $V = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation	1.	Read flow capacity at
		set vacuum from table
6" Model 1202B	2.	Calculate over-vacuum
0.12 BarG Set Vacuum [P _s]	3.	Read "C" factor from table
0.17 BarG Flowing Vacuum $[P_f]$	4.	Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for 42% Over-vacuum at intersection of row 40 and column 2 "C" factor at 42% OV = 0.55

	"C" Factor Table												
%0V	0	1	2	3	4	5	6	7	8	9			
10		•••Consult Factory•••											
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40			
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52			
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62			
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71			
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79			
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86			
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93			
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00			

Flow = 4,530 NCMH $\% \text{ OV} = [(0.17 - 0.12)/0.12] \times 100 = 42\%$

"C" = 0.55

Flow = $0.55 \times 4,530 = 2,492$ NCMH

PRESSURE / VACUUM RELIEF VALVE

- Sizes 2" through 12"
- Pressure settings 0.5 oz/in² to 15 PSIG
- Vacuum settings 0.5 oz/in² to 12 PSIG
- Available in aluminum (type 356), carbon steel, stainless steel and other materials
- Factory Mutual approved flame arresters
- Proven spiral wound, crimped ribbon, flame element
- Modular Construction

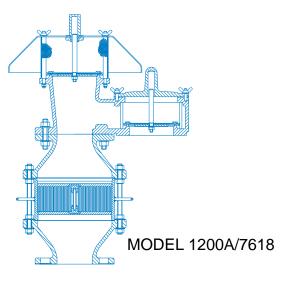
PRESSURE / VACUUM RELIEF VALVE WITH FLAME ARRESTER

The Model 1200A/7618 Pressure/Vacuum Valve & Flame arrester combination units are designed to protect your tank from damage created by overpressure or excessive vacuum, at the same time that they provide protection from externally caused sources of heat and ignition. The result is increased fire protection and safety.

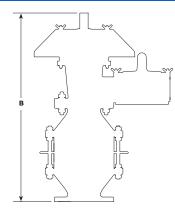
SPECIAL FEATURES

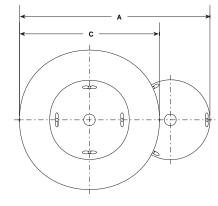
The Model 1200A Pressure/Vacuum relief valve offers Groth's special "cushioned air" seating. Superior performing Teflon®¹ seating diaphragms are standard to minimize sticking caused by resinous vapors and atmospheric moisture. Self draining housings and drip rings protect seating surfaces from condensate and freezing.

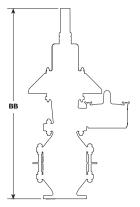
The wafer construction of the Model 7618 flame arrester affords easy accessibility to the flame bank for maintenance. All Groth flame arresters utilize spiral wound, crimped ribbon constructed flame elements. These proven, Factory Mutual approved elements, have been reported by NTIS of the Dept. of Commerce, to provide the best flame quenching performance for the least pressure drop. Groth flame arresters are pneumatic tested to 15 PSIG as standard.


GROTH, THE CAPABILITY COMPANY

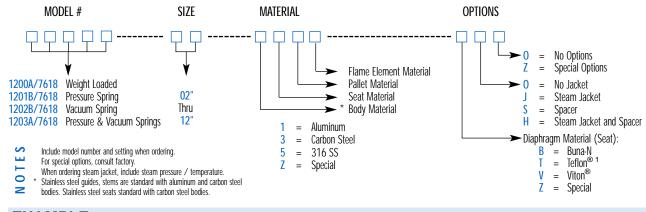
As with all Groth products, every model 1200A/7618 is factory inspected and tested to meet your critical requirements and special needs. Inventory is maintained to insure rapid delivery.






MODEL 1200A/7618

SPECIFICATIONS



	Specifications subject to change without notice. Certified dimensions available upon requ										
Inlet Flg	Max. Set Pressure Weight Loaded	Max. Set Vacuum. Weight Loaded	Max. Setting Spring Loaded	Min. Setting Weight Loaded	Max. W.P.† for Min. Vacuum Setting	Min. Vac. Setting for Max. W.P.†	A Length (mm)	B Height (mm)	BB Height (mm)	C Width (mm)	Approx. Ship Wt. Lbs. (Aluminum)
2″		12 oz/in ²					13 ^{5/8} ″	27″	33 ^{7/8} ″	9 1/2 ″	35
(50 mm)		(52.7 gm/cm²)				-	(346)	(685)	(860)	(241)	(16 kg)
3″		11 oz/in ²			See TP	D2 for	18″	29 ^{5/8} ″	38 ^{3/4} ″	11 1/2 "	45
(80 mm)		(48.3 gm/cm ²)	A R		Vacuum and N	Settings	(457)	(752)	(984)	(292)	(20 kg)
4″		11 oz/in ²	SPRING LOADED PRESSURE (1.05 kg. / cm ²) SPRING LOADED VACUUM (0.84 kg. / cm ²)	DED	anun	IIAWP	19 ^{3/4} ″	34 ^{5/8} ″	46 1/4 "	13″	70
(100 mm)	a (c	(48.3 gm/cm ²)		T LO#			(502)	(879)	(1175)	(330)	(32 kg)
6″	16 oz/in² (70.3 gm. /cm ²)	16 oz/in²	G. /c	*0.5 oz/in² WEIGHT LOADED (2.20 gm. /cm²)			28 ^{3/4} "	43 1/4 "	58 ^{3/4} "	19″	125
(150 mm)	70.3 g	(70.3 gm/cm²)	PRING (0.84 IC	/in² V 2.20 g			(730)	(1099)	(1492)	(483)	(57 kg)
8″	Ŭ	16 oz/in²		5 oz			36″	51 ^{3/8} "	69 1/2 "	23 5/8 "	210
(200 mm)		(70.3 gm/cm²)	15 PSIG 12 PSIG) *			(914)	(1305)	(1765)	(600)	(95 kg)
10″		16 oz/in²					42″	58 ^{7/8} "	83	30 3/4 "	350
(250 mm)		(70.3 gm/cm²)					(1067)	(1495)	(2108)	(781)	(160 kg)
12″		16 oz/in²					48 1/2 "	65 ^{3/8} ″	88 1/8 ″	35 ^{3/4} "	500
(300 mm)		(70.3 gm/cm²)					(1232)	(1661)	(2238)	(908)	(227 kg)

⁺ W.P. = Working Pressure. ⁺ On spring loaded valves, change model number. 150# A.N.S.I. drilling compatibility, F.F. on aluminum and R.F. on carbon steel and stainless steel alloys. 16 oz/in² set with spacer. S.S. set weights-Consult Factory. *Some sizes require non-ferrous components to achieve 0.5 oz./sq.in. setting.

HOW TO ORDER

For easy ordering, select proper model numbers

EXAMPLE 1 2 0 0 A/7 6 1 8 - 0 2 - 1 1 5 1 - T 0 0

Indicates a 2" Model 1200A/7618 with Aluminum Body and Seat, 316 SS Pallet, Teflon^{®1} Seat Diaphragm, Aluminum Flame Element and no other options.

¹ Teflon is a registered trademark of DuPont Corporation.

Model 1200/7618 **Pressure Relief Capacity**

	ressure P _s)	Air F	Air Flow Capacity at 100% Over-pressure (Double Set Pressure) 1000 Standard Cubic Feet per Hour at 60° F								
In WC	Öz/Sq In	2″	3″	4″	6″	8″	10″	12″			
0.87	0.50	3.01	5.98	10.7	21.5	34.8	55.2	62.3			
1.00	0.58	3.29	6.68	12.0	24.2	39.2	62.1	72.0			
1.73	1.00	4.56	9.70	17.6	36.3	58.4	92.0	112			
2.00	1.16	4.96	10.7	19.3	39.9	64.2	101	125			
2.60	1.50	5.76	12.6	22.7	47.2	75.9	120	148			
3.00	1.73	6.26	13.7	24.8	51.7	82.9	131	163			
3.46	2.00	6.79	15.0	27.1	56.4	90.5	143	178			
4.00	2.31	7.36	16.3	29.5	61.5	99.0	155	195			
6.00	3.47	9.20	20.6	37.3	78.1	125	197	249			
8.00	4.62	10.9	24.3	44.0	92.2	148	233	295			
10.0	5.78	12.3	27.6	50.0	105	168	264	335			
12.0	6.93	13.6	30.6	55.4	116	186	293	372			
15.0	8.66	15.4	34.6	62.8	132	211	332	422			
20.0	11.6	18.0	40.7	73.7	155	248	390	497			
25.0	14.4	20.4	46.0	83.5	175	281	442	563			
30.0	17.3	22.6	50.9	92.4	194	311	489	623			

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

Consult Factory for flow capacity with fiberglass valve.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f = Flowing pressure$ $P_s = Set pressure$ $\% OP = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation	1.	Read flow capacity at
		set pressure from table
6" Model 1200A/7618	2.	Calculate over-pressure
4 In WC set pressure [P _s]	3.	Read "C" factor from ta
7 In WC flowing pressure [P _f]	4.	Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for 75% Over-pressure at intersection of row 70 and column 5 "C" factor at 75% OP = 0.87

	"C" Factor Table												
%0P	0	1	2	3	4	5	6	7	8	9			
10													
20					Consult								
30					Factory								
40													
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78			
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84			
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89			
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94			
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00			

Flow = 61,500 SCFH $\% \text{ OP} = [(7 - 4)/4] \times 100 = 75\%$ "C" = 0.87

"C" factor from table

Flow = 0.87 x 61,500 = 53,505 SCFH

Model 1200A/7618 Pressure Relief Capacity

Set Pressure (P _s)	Air F	Air Flow Capacity at 100% Over-pressure (Double Set Pressure) 1000 Normal Cubic Meters per Hour at 0° C										
mm WC	2″	3″	4″	6″	8″	10″	12″					
22.0	0.09	0.18	0.32	0.64	1.04	1.65	1.91					
50.0	0.14	0.30	0.55	1.13	1.82	2.87	3.53					
75.0	0.18	0.39	0.70	1.46	2.35	3.70	4.62					
100	0.21	0.46	0.83	1.74	2.80	4.40	5.53					
150	0.26	0.58	1.06	2.21	3.55	5.59	7.05					
200	0.31	0.69	1.25	2.61	4.19	6.59	8.35					
250	0.35	0.78	1.42	2.97	4.76	7.48	9.50					
300	0.39	0.87	1.57	3.29	5.27	8.30	10.5					
375	0.44	0.98	1.78	3.73	5.98	9.41	12.0					
500	0.51	1.15	2.09	4.39	7.02	11.0	14.1					
625	0.58	1.30	2.36	4.97	7.96	12.5	15.9					
750	0.64	1.44	2.62	5.50	8.80	13.8	17.6					

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

Consult Factory for flow capacity with fiberglass valve.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} P_{f} = Flowing \ pressure \\ P_{s} = Set \ pressure \\ \% \ OP = \left[(P_{f} - P_{s})/P_{s}\right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—To find "C" factor from table: Read "C" factor for 67% Over-pressure at intersection of row 60 and column 7

"C" factor at 67% OP = **0.82**

	"C" Factor Table												
%OP	0	1	2	3	4	5	6	7	8	9			
10													
20					Consult								
30					Factory								
40													
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78			
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84			
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89			
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94			
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00			

Example—Flow Capacity Calculation	1.	Read flow capacity at set pressure from table	Flow = 2,210 NCMH
6" Model 1200A/7618 150 mm WC Set Pressure [P _s] 250 mm WC Flowing Pressure [P _f]	3.	Calculate over-pressure Read "C" factor from table Calculate flow capacity	% OP = [(250 - 150)/150] x 100 = 67% "C" = 0.82 Flow = 0.82 x 2,210 = 1,812 NCMH

Model 1200A/7618 Vacuum Relief Capacity

	acuum P_)	Air	Flow Capac	ity at 100 ^o 00 Standard				icuum)
In WC	oz/Sq In	2″	3″	4″	6″	8″	10″	12″
0.87	0.50	2.55	5.19	8.80	17.9	28.6	44.3	53.6
1.00	0.58	2.77	5.73	9.70	19.8	31.6	48.9	60.4
1.73	1.00	3.78	8.15	13.6	28.3	45.1	69.4	89.8
2.00	1.16	4.10	8.90	14.9	31.0	49.3	75.8	99.0
2.60	1.50	4.74	10.4	17.4	36.2	57.7	88.6	117
3.00	1.73	5.14	11.3	18.9	39.5	62.9	96	128
3.46	2.00	5.56	12.3	20.5	42.9	68.4	105	139
4.00	2.31	6.03	13.4	22.3	46.7	74.4	114	152
6.00	3.47	7.54	16.9	28.1	58.9	93.8	144	193
8.00	4.62	8.84	19.9	33.0	69.4	110	169	227
10.0	5.78	10.0	22.5	37.4	78.6	125	192	258
12.0	6.93	11.1	24.9	41.5	87.1	139	212	286
15.0	8.66	12.5	28.2	46.9	98.6	157	240	324
20.0	11.6	14.7	33.1	55.1	116	184	282	381
25.0	14.4	16.6	37.5	62.3	131	209	319	432
30.0	17.3	18.3	41.5	68.9	145	231	353	478

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

Consult Factory for flow capacity with fiberglass valve.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OV} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}}) / \mathsf{P}_{\mathsf{s}} \right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation	1.	Read flow capacity at
		set vacuum from table
6" Model 1200A/7618	2.	Calculate over-vacuum
4 In WC set vacuum [P _s]	3.	Read "C" factor from table
7 In WC flowing vacuum $[P_f]$	4.	Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for **75%** Over-vacuum at intersection of row **70** and column **5** "C" factor at 75% OV = 0.87

	"C" Factor Table												
%0V	0	1	2	3	4	5	6	7	8	9			
10													
20					Consult								
30					Factory								
40				_									
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78			
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84			
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89			
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94			
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00			

Flow = 46,700 SCFH % OV = $[(7 - 4)/4] \times 100 = 75\%$

"C" = 0.87

Flow = 0.87 x 46,700 = 40,629 SCFH

Model 1200A/7618 Vacuum Relief Capacity

Set Vacuum (P _s)	Air	Air Flow Capacity at 100% Over-vacuum (Double Set Vacuum) 1000 Normal Cubic Meters per Hour at 0° C								
mm WC	2″	3″	4″	6″	8″	10″	12″			
22.0	0.07	0.15	0.26	0.52	0.84	1.29	1.60			
50.0	0.12	0.25	0.42	0.87	1.39	2.13	2.78			
75.0	0.14	0.32	0.53	1.11	1.77	2.72	3.59			
100	0.17	0.38	0.63	1.32	2.09	3.21	4.27			
150	0.21	0.48	0.79	1.66	2.64	4.05	5.42			
200	0.25	0.56	0.93	1.95	3.11	4.76	6.40			
250	0.28	0.63	1.05	2.21	3.53	5.40	7.27			
300	0.31	0.70	1.17	2.45	3.90	5.97	8.06			
375	0.35	0.80	1.32	2.78	4.42	6.77	9.10			
500	0.41	0.93	1.55	3.26	5.19	7.94	10.7			
625	0.47	1.06	1.76	3.69	5.87	8.98	12.2			
750	0.52	1.17	1.94	4.08	6.50	9.90	13.5			

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

Consult Factory for flow capacity with fiberglass valve.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} P_{f} = \text{Flowing pressure} \\ P_{s} = \text{Set pressure} \\ \% \text{ OV} = \left[(P_{f} - P_{s})/P_{s}\right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—To find "C" factor from table:

Read "C" factor for 67% Over-vacuum at intersection of row 60 and column 7 "C" factor at 67% OV = 0.82

	"C" Factor Table												
%0V	0	1	2	3	4	5	6	7	8	9			
10													
20		Consult											
30		Factory											
40													
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78			
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84			
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89			
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94			
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00			

Example—Flow Capacity Calculation	1.	Read flow capacity at set vacuum from table	Flow = 1,660 NCMH
6" Model 1200A/7618 150 mm WC Set Vacuum $[{\rm P}_{\rm S}]$ 250 mm WC Flowing Vacuum $[{\rm P}_{\rm f}]$	3.	Calculate over-vacuum Read "C" factor from table Calculate flow capacity	% OV = [(250 - 150)/150] x 100 = 67% "C" = 0.82 Flow = 0.82 x 1,660 = 1,361 NCMH

PRESSURE / VACUUM RELIEF VALVE

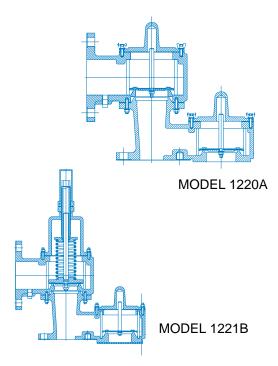
Model 1220A with Pipe-Away Feature

- Sizes 2" through 12"
- Pressure settings 0.5 oz/in² to 15 PSIG
- Vacuum settings 0.5 oz/in² to 12 PSIG
- Available in aluminum (type 356), carbon steel, stainless steel and other materials.
- Modular construction

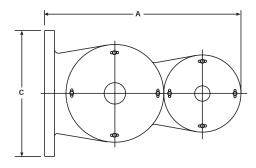
PRESSURE / VACUUM RELIEF VALVE WITH PIPE-AWAY FEATURE

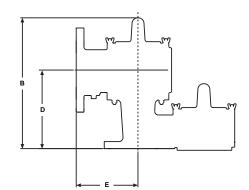
Model 1220A is used for pressure and vacuum relief where vapors must be piped away. Special pallets in the Model 1220A housing virtually eliminate the intake of air and the escape of vapors except during normal tank breathing, thus reducing the loss of product. These special pallets are engineered to allow only the intake or outlet relief necessary to maintain the proper working pressure, thereby protecting the tank from possible damage. Escaping vapors are piped away through a flanged outlet connection. This helps to provide increased fire protection and safety.

SPECIAL FEATURES


Model 1220A offers Groth's special "cushioned air" seating. Superior performing Teflon^{® 1} seating diaphragms are standard to minimize sticking caused by resinous vapors and atmospheric moisture. The Model 1220A has a self draining housing body and drip rings to protect seating surfaces from condensate and freezing. This design also avoids pressure or vacuum buildup due to binding or clogging of the valve. Buna-N, Viton® and other seating diaphragms can be provided when required. Model 1221B may be spring loaded when required for use on blanketed tanks or other type installation requiring higher settings. To insure the proper alignment of seating surfaces there is peripheral guiding and a center stabilizing stem.

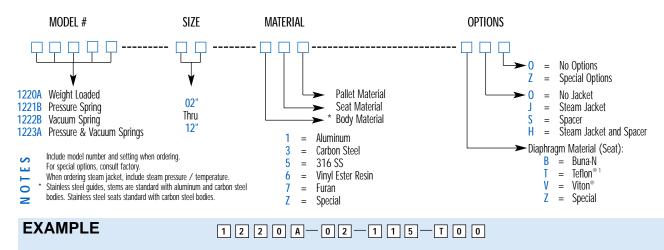
GROTH, THE CAPABILITY COMPANY


As with all Groth products, every Model 1220A is factory inspected and tested to meet your critical requirements and special needs. Inventory is maintained to insure rapid delivery.



MODEL 1220A

SPECIFICATIONS


Specifications subject to change without notice. Certified dimensions available upon request.

							Opecifica		st to change	without not	ce. Certified	amension		upon request.
Inlet Flg.	Outlet Flg.	Max. Set Pressure Weight Loaded	Max. Set Vacuum Weight Loaded	Max. Setting Spring Loaded	Min. Setting Weight Loaded	Max. W.P. [†] for Min. Vacuum Setting	Min. Vac. Setting for Max. W.P. [†]	A Length (mm)	B Height (mm)	C Width (mm)	D (mm)	E (mm)	BB (mm)	Approx. Ship Wt. Lbs. (Aluminum)
2″	3″	11 oz/in ²	12 oz/in ²					14 1/4 ″	12 5/8 ″	7 1/2 "	7″	5 ^{1/2} ″	19 ^{5/8} ″	26
(50 mm)	(80 mm)	(48.2 gm/cm ²)	(52.7 gm/cm²)					(361)	(320)	(191)	(178)	(140)	(499)	(12 kg)
3″ (80 mm)	4 " (100 mm)	13 oz/in² (57.0 gm/cm²)	11 oz/in² (48.3 gm/cm²)	JRE JM		Vacuum	D2 for Settings NAWP	18″ (457)	15 ^{1/8} ″ (384)	9'' (229)	8 ^{1/8} ″ (206)	6'' (152)	23 ^{3/8} ″ (594)	34 (16 kg)
4″	6″	16 oz/in²	11 oz/in ²	PRESSURE VACUUM	ADED	anun		19 1/4 <i>"</i>	18 1/4 "	11″	9 1/2 ″	6 ^{1/2} ″	28 5/8 ″	49
(100 mm)	(150 mm)	(70.3 gm/cm²)	(48.3 gm/cm ²)					(489)	(463)	(279)	(241)	(165)	(727)	(22 kg)
6″ (150 mm)	8″ (200 mm)	16 oz/in² (70.3 gm/cm²)	16 oz/in² (70.3 gm/cm²)	SPRING LOADED PRESSURE (1.05 kg. /cm?) SPRING LOADED VACUUM (0.84 kg. /cm?)	oz/in ² WEIGHT LOADED (2.20 gm. /cm ²)			26 ^{1/2} " (673)	23 ^{3/4} " (603)	13 ^{1/2} " (343)	12 ^{3/4} ″ (324)	8 ^{1/2} " (216)	38 ^{3/8} ″ (984)	93 (42 kg)
8″ (200 mm)	10" (250 mm)	16 oz/in ² (70.3 gm/cm²)	16 oz/in ² (70.3 gm/cm²)	15 PSIG SF 12 PSIG S	*0.5 oz			32 ^{1/2} " (826)	28 ^{1/2} " (723)	16" (406)	15 ^{1/4} ″ (387)	10 ^{3/4} ″ (273)	45 ^{1/4} ″ (1149)	137 (62 kg)
10" (250 mm)	12" (300 mm)	16 oz/in ² (70.3 gm/cm²)	16 oz/in² (70.3 gm/cm²)					37 ^{3/4} ″ (959)	34 ^{1/2} " (876)	19″ (483)	18″ (457)	12 ^{1/2} " (318)	54 ^{1/8} ″ (1375)	186 (85 kg)
12" (300 mm)	14" (350 mm)	16 oz/in ² (70.3 gm/cm ²)	16 oz/in² (70.3 gm/cm²)					42 ^{3/4} " (1086)	39 ^{1/8} ″ (993)	21" (533)	20 ^{5/8} ″ (524)	15″ (381)	58 ^{7/8} ″ (1496)	260 (118 kg)

¹ W.P. = Working Pressure. ¹ On spring loaded valves, change model number. 150# R.F. drilling compatibility F.F. on aluminum and R.F. on carbon steel and stainless steel alloys. Fiberglass dimensions on request. 16 oz/in² set with spacer. S.S. set weights-Consult Factory. ^{*}Some sizes require non-ferrous components to achieve 0.5 oz./sq. in. setting.

HOW TO ORDER

For easy ordering, select proper model numbers

Indicates a 2" Model 1220A with Aluminum Body and Seat, 316 SS Pallet, Teflon®1 Seat Diaphragm and no other options.

1 Teflon is a registered trademark of DuPont Corporation.

Model 1220A Pressure Relief Capacity

	ressure P ₂)	Air F	low Capacit	t <mark>y at 100%</mark> 00 Standard				essure)
In WC	Öz/Sq In	2″	3″	4″	6″	8″	10″	12″
0.87	0.50	6.87	13.3	25.2	52.7	82.6	135	175
1.00	0.58	7.39	14.3	27.1	56.6	88.8	145	188
1.73	1.00	9.71	18.8	35.6	74.3	117	190	247
2.00	1.16	10.4	20.2	38.2	79.8	125	205	265
2.60	1.50	11.9	23.0	43.5	90.8	143	233	302
3.00	1.73	12.8	24.7	46.8	97.5	153	250	324
3.46	2.00	13.7	26.6	50.2	105	164	268	348
4.00	2.31	14.7	28.6	53.9	112	177	288	374
6.00	3.47	18.0	35.0	65.9	137	215	351	456
8.00	4.62	20.7	40.4	75.8	157	248	404	525
10.0	5.78	23.1	45.1	84.6	175	276	450	584
12.0	6.93	25.2	49.4	92.4	191	301	491	638
15.0	8.66	28.1	55.2	103	211	335	546	709
20.0	11.6	32.2	63.7	118	241	383	625	811
25.0	14.4	35.8	71.2	131	267	424	692	898
30.0	17.3	39.0	77.9	143	289	460	751	975

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f =$ Flowing pressure $P_s =$ Set pressure $\% OP = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation	1
6" Model 1220A	

4 In WC set pressure [P_s]

7 In WC flowing pressure [P_f]

 Read flow capacity at set pressure from table
 Calculate over-pressure

- 3. Read "C" factor from table
 - 4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for **75%** Over-pressure at intersection of row **70** and column **5** "C" factor at 75% OP = 0.87

	"C" Factor Table												
% O P	0	1	2	3	4	5	6	7	8	9			
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50			
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58			
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65			
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72			
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78			
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84			
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89			
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94			
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00			

Flow = 112,000 SCFH % OP = [(7 - 4)/4] x 100 = 75%

"C" = 0.87

Flow = 0.87 x 112,000 = 97,440 SCFH

Model 1220A Pressure Relief Capacity

	essure	Air F	low Capacit		-			essure)
	P _s)			00 Normal C				
mm WC	mb	2″	3″	4″	6″	8″	10″	12″
22	2.16	0.19	0.37	0.71	1.48	2.33	3.80	4.93
50	4.90	0.29	0.56	1.07	2.23	3.50	5.72	7.42
75	7.35	0.36	0.69	1.31	2.72	4.28	6.99	9.10
100	9.80	0.41	0.80	1.51	3.14	4.93	8.05	10.4
125	12.3	0.46	0.89	1.68	3.50	5.51	8.99	11.7
150	14.7	0.50	0.98	1.84	3.82	6.02	9.80	12.7
175	17.2	0.54	1.06	1.99	4.12	6.49	10.6	13.7
200	19.6	0.58	1.13	2.12	4.39	6.92	11.3	14.7
225	22.1	0.61	1.20	2.25	4.65	7.33	12.0	15.5
250	24.5	0.65	1.26	2.36	4.89	7.71	12.6	16.3
275	27.0	0.68	1.32	2.48	5.11	8.07	13.2	17.1
300	29.4	0.70	1.38	2.58	5.33	8.42	13.7	17.8
375	36.8	0.78	1.54	2.88	5.91	9.40	15.3	19.8
500	49.0	0.90	1.78	3.30	6.75	10.7	17.5	22.7
625	61.3	1.00	1.99	3.67	7.46	11.9	19.4	25.1
750	73.5	1.09	2.18	3.99	8.07	12.9	21.0	27.3

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OP} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}}) / \mathsf{P}_{\mathsf{s}} \right] \, \textbf{x} \, \, 100 \end{array}$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at set pressure from table 6" Model 1220A 2. Calculate over-pressure 100 mm WC Set Pressure [Ps] 3. Read "C" factor from table 175 mm WC Flowing Pressure [Pf] 4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for 75% Over-pressure at intersection of row 70 and column 5 "C" factor at 75% OP = 0.87

	"C" Factor Table												
%0P	0	1	2	3	4	5	6	7	8	9			
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50			
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58			
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65			
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72			
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78			
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84			
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89			
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94			
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00			

Flow = 3,140 NCMH

% OP = [(175 - 100)/100] x 100 = 75% "C" = 0.87

Flow = 0.87 x 3,140 = 2,732 NCMH

Model 1220A Vacuum Relief Capacity

	acuum PJ)	Air	Flow Capac	ity at 100 ^o 00 Standard				icuum)
In WC	Oz/Sq In	2″	3″	4″	6″	8″	10″	12″
0.87	0.50	4.70	10.3	16.0	34.7	60.5	91.1	129
1.00	0.58	5.05	11.0	17.2	37.3	65.0	97.9	138
1.73	1.00	6.63	14.5	22.6	49.0	85.3	129	182
2.00	1.16	7.12	15.6	24.2	52.6	91.6	138	195
2.60	1.50	8.10	17.7	27.6	59.8	104	157	222
3.00	1.73	8.70	19.0	29.6	64.2	112	169	238
3.46	2.00	9.33	20.4	31.8	68.9	120	181	256
4.00	2.31	10.0	21.9	34.1	74.0	129	194	274
6.00	3.47	12.2	26.7	41.5	90.1	157	237	334
8.00	4.62	14.0	30.6	47.7	103	180	272	384
10.0	5.78	15.6	34.0	53.0	115	200	302	427
12.0	6.93	17.0	37.1	57.8	125	218	329	465
15.0	8.66	18.8	41.1	64.0	139	242	365	516
20.0	11.6	21.4	46.8	72.9	158	276	415	587
25.0	14.4	23.6	51.5	80.3	174	304	457	646
30.0	17.3	25.4	55.6	86.6	188	327	493	697

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OV} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}})/\mathsf{P}_{\mathsf{s}}\right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation
6" Model 1220A
4 In WC set vacuum [Ps]

7 In WC flowing vacuum [P_f]

 Read flow capacity at set vacuum from table
 Calculate over-vacuum
 Read "C" factor from table

4. Calculate flow capacity

Example—To find "C" factor from table:

Read	"C" factor for	75%	Over-vacuum	at intersection	of row	70 a	and column 5	
"C" fa	ictor at 75% ()V = 0).87					

	"C" Factor Table												
%0V	0	1	2	3	4	5	6	7	8	9			
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50			
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58			
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65			
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72			
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78			
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84			
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89			
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94			
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00			

Flow = 74,000 SCFH % $0V = [(7 - 4)/4] \times 100 = 75\%$

"C" = 0.87

Flow = 0.87 x 74,000 = 64,380 SCFH

Model 1220A Vacuum Relief Capacity

	acuum ?_)	Air	Flow Capac 10	ity at 100 ^o 00 Normal C				cuum)
mm WC	mb	2″	3″	4″	6″	8″	10″	12″
22	2.16	0.13	0.29	0.45	0.98	1.71	2.58	3.65
50	4.90	0.20	0.44	0.68	1.48	2.58	3.88	5.48
75	7.35	0.24	0.53	0.83	1.81	3.15	4.74	6.70
100	9.80	0.28	0.62	0.96	2.08	3.62	5.46	7.72
125	12.3	0.31	0.69	1.07	2.32	4.04	6.09	8.60
150	14.7	0.34	0.75	1.17	2.53	4.41	6.65	9.40
175	17.2	0.37	0.81	1.26	2.73	4.75	7.16	10.1
200	19.6	0.39	0.86	1.34	2.91	5.07	7.64	10.8
225	22.1	0.42	0.91	1.42	3.08	5.36	8.08	11.4
250	24.5	0.44	0.96	1.49	3.23	5.64	8.49	12.0
275	27.0	0.46	1.00	1.56	3.38	5.90	8.88	12.6
300	29.4	0.48	1.04	1.62	3.52	6.14	9.25	13.1
375	36.8	0.53	1.16	1.80	3.91	6.81	10.3	14.5
500	49.0	0.60	1.32	2.05	4.45	7.75	11.7	16.5
625	61.3	0.66	1.45	2.26	4.90	8.54	12.9	18.2
750	73.5	0.72	1.57	2.44	5.29	9.22	13.9	19.6

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OV} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}}) / \mathsf{P}_{\mathsf{s}} \right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at set vacuum from table 6" Model 1220A 2. Calculate over-vacuum 100 mm WC Set Vacuum [P_s] 3. Read "C" factor from table 175 mm WC Flowing Vacuum [P_f] 4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for **75%** Over-vacuum at intersection of row **70** and column **5** "C" factor at 75% OV = **0.87**

	"C" Factor Table													
%0V	0	1	2	3	4	5	6	7	8	9				
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50				
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58				
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65				
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72				
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78				
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84				
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89				
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94				
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00				

Flow = 2,080 NCMH % OV = [(175 - 100)/100] x 100 = 75%

"C" = 0.87

Flow = 0.87 x 2,080 = 1,810 NCMH

Model 1221B Pressure Relief Capacity

Set Pressure (P _s)	Air F	low Capacit 10	t <mark>y at 100%</mark> 00 Standard				essure)
PSIG	2″	3″	4″	6″	8″	10″	12″
1.00	28.0	53.4	92.5	210	345	529	739
2.00	40.3	77.4	134	304	500	767	1070
3.00	50.2	96.9	168	381	625	960	1340
4.00	58.8	114	198	448	736	1130	1577
5.00	66.5	130	225	510	838	1286	1794
6.00	73.7	144	250	568	932	1431	1997
7.00	80.4	158	274	622	1022	1568	2188
8.00	86.7	171	297	674	1107	1699	2371
9.00	92.8	184	319	724	1189	1825	2546
10.0	98.6	196	340	772	1267	1945	2714
11.0	104	208	360	818	1343	2062	2877
12.0	110	219	380	863	1417	2176	3036
13.0	115	231	400	907	1489	2286	3189
14.0	120	241	418	949	1559	2393	3339
15.0	125	252	437	991	1627	2498	3486

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OP} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}}) / \mathsf{P}_{\mathsf{s}} \right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-pressure according to the following example.

1.	Read flow capacity at
	set pressure from table
2.	Calculate over-pressure
3.	Read "C" factor from table
4.	Calculate flow capacity
	2. 3.

Example—To find "C" factor from table:

Read "C" factor for **75%** Over-pressure at intersection of row **70** and column **5** "C" factor at 75% OP = 0.83

	"C" Factor Table												
%0P	0	1	2	3	4	5	6	7	8	9			
10			•	••Cons	ult Facto	ory•••							
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40			
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52			
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62			
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71			
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79			
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86			
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93			
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00			

Flow = 448,000 SCFH % OP = [(7 - 4)/4] x 100 = 75% "C" = 0.83

Flow = 0.83 x 448,000 = 371,840 SCFH

Model 1221B Pressure Relief Capacity

Set Pressure (P.)	Air F	low Capacit	t <mark>y at 100%</mark> 00 Normal C				essure)
BarG	2″	3″	4″	6″	8″	10″	12″
0.07	0.82	1.57	2.72	6.16	10.1	15.5	21.7
0.10	0.99	1.89	3.28	7.45	12.2	18.8	26.2
0.15	1.23	2.36	4.09	9.28	15.2	23.4	32.6
0.20	1.43	2.76	4.80	10.9	17.9	27.4	38.3
0.25	1.62	3.14	5.44	12.3	20.3	31.1	43.4
0.30	1.79	3.48	6.04	13.7	22.5	34.5	48.2
0.35	1.95	3.81	6.61	15.0	24.6	37.8	52.7
0.40	2.10	4.12	7.14	16.2	26.6	40.9	57.0
0.45	2.25	4.41	7.66	17.4	28.5	43.8	61.1
0.50	2.39	4.70	8.16	18.5	30.4	46.6	65.1
0.55	2.52	4.98	8.64	19.6	32.2	49.4	68.9
0.60	2.65	5.25	9.10	20.6	33.9	52.1	72.6
0.70	2.89	5.76	10.0	22.7	37.2	57.2	79.7
0.80	3.13	6.25	10.8	24.6	40.4	62.1	86.5
0.90	3.35	6.72	11.7	26.5	43.5	66.7	93.1
1.00	3.56	7.18	12.5	28.3	46.4	71.2	99.4

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Example—To find "C" factor from table:

Read "C" factor for 75% Over-pressure at intersection of row 70 and column 5 "C" factor at 75% OP = 0.83

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OP} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}}) / \mathsf{P}_{\mathsf{s}} \right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at set pressure from table 6" Model 1221B 2. Calculate over-pressure 0.4 BarG Set Pressure [Ps] 3. Read "C" factor from table 0.7 BarG Flowing Pressure [Pf] 4. Calculate flow capacity

	"C" Factor Table													
%0P	0	1	2	3	4	5	6	7	8	9				
10		•••Consult Factory•••												
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40				
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52				
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62				
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71				
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79				
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86				
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93				
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00				

Flow = 16,200 NCMH

% OP = $[(0.7 - 0.4)/0.4] \times 100 = 75\%$

"C" = 0.83

 $Flow = 0.83 \times 16,200 = 13,446 \text{ NCMH}$

Model 1222B Vacuum Relief Capacity

Set Vacuum (P _s)	Air	Air Flow Capacity at 100% Over-vacuum (Double Set Vacuum) 1000 Standard Cubic Feet per Hour at 60° F								
PSIG	2″	3″	4″	6″	8″	10″	12″			
1.00	13.8	30.5	52.9	120	197	302	422			
1.10	14.5	31.9	55.4	126	206	316	442			
1.20	15.1	33.2	57.7	131	215	330	460			
1.30	15.7	34.5	59.9	136	223	342	478			
1.40	16.2	35.7	62.0	141	231	355	495			
1.50	16.8	36.9	64.0	145	239	366	511			
1.75	18.0	39.6	68.7	156	256	393	548			
2.00	19.1	42.0	73.0	166	272	417	582			
2.25	20.1	44.3	76.9	174	286	439	613			
2.50	21.0	46.3	80.4	183	300	460	641			
2.75	21.9	48.2	83.7	190	312	478	667			
3.00	22.7	49.9	86.6	197	323	495	691			
3.25	23.4	51.4	89.3	203	333	511	713			
3.50	24.0	52.8	91.8	208	342	525	732			
>3.50		CONSU	LT FACTORY FO	r vacuum set	TINGS GREATE	R THAN 3.5 PS	SI			

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f = Flowing pressure$ $P_s = Set pressure$ $\% \text{ OV} = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation	1.	Read flow capacity at set vacuum from table
6" Model 1222B	2.	Calculate over-vacuum
2 PSIG set vacuum [P _s]	3.	Read "C" factor from ta
3.5 PSIG flowing vacuum $[P_f]$	4.	Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for 75% Over-vacuum at intersection of row 70 and column 5 "C" factor at 75% OV = 0.83

	"C" Factor Table													
%0V	0	1	2	3	4	5	6	7	8	9				
10			•	••Cons	ult Facto	ory•••								
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40				
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52				
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62				
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71				
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79				
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86				
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93				
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00				

Flow = 166,000 SCFH

% 0V = [(3.50 - 2.0)/2.0] x 100 = 75%

"C" = 0.83

" factor from table

Flow = 0.83 x 166,000 = 137,780 SCFH

Model 1222B Vacuum Relief Capacity

Set Vacuum (P _s)	Air	Air Flow Capacity at 100% Over-vacuum (Double Set Vacuum) 1000 Normal Cubic Meters per Hour at 0° C									
BarG	2″	3″	4″	6″	8″	10″	12″				
0.07	0.41	0.90	1.55	3.52	5.77	8.87	12.4				
0.10	0.48	1.06	1.83	4.16	6.83	10.5	14.6				
0.11	0.51	1.11	1.92	4.35	7.14	11.0	15.3				
0.12	0.53	1.15	1.99	4.53	7.43	11.4	15.9				
0.13	0.55	1.20	2.07	4.69	7.70	11.8	16.5				
0.14	0.56	1.24	2.14	4.85	7.96	12.2	17.1				
0.15	0.58	1.27	2.20	5.00	8.21	12.6	17.6				
0.16	0.60	1.31	2.27	5.14	8.44	13.0	18.1				
0.17	0.61	1.35	2.33	5.28	8.66	13.3	18.6				
0.18	0.63	1.38	2.38	5.41	8.88	13.6	19.0				
0.19	0.64	1.41	2.44	5.53	9.08	13.9	19.4				
0.20	0.66	1.44	2.49	5.65	9.27	14.2	19.8				
0.22	0.68	1.49	2.58	5.86	9.62	14.8	20.6				
0.24	0.70	1.54	2.67	6.05	9.93	15.2	21.3				
>0.24		CONSU	lt factory fo	r vacuum set	TINGS GREATE	R THAN 0.24 I	BARG				

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f =$ Flowing pressure $P_s =$ Set pressure % OV = [($P_f - P_s$)/ P_s] x 100

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at set vacuum from table 6" Model 1222B 2. Calculate over-vacuum 0.12 BarG Set Vacuum [Ps] 3. Read "C" factor from table 0.17 BarG Flowing Vacuum [Pf] 4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for 42% Over-vacuum at intersection of row 40 and column 2 "C" factor at 42% OV = 0.55

	"C" Factor Table													
%0V	0	1	2	3	4	5	6	7	8	9				
10			•	••Cons	ult Facto	ory•••								
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40				
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52				
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62				
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71				
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79				
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86				
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93				
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00				

Flow = 4,530 NCMH % OV = [(0.17 - 0.12)/0.12] x 100 = 42%

"C" = 0.55

Flow = $0.55 \times 4,530 = 2,491$ NCMH

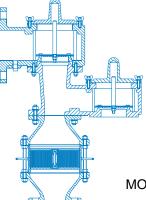
PRESSURE / VACUUM RELIEF VALVE

Model 1220A/7618 and Flame Arrester w/pipe-away feature

- Sizes 2" through 12"
- Pressure settings 0.5 oz/in² to 15 PSIG
- Vacuum settings 0.5 oz/in² to 12 PSIG
- Available in aluminum (type 356), carbon steel, stainless steel and other materials.
- Factory Mutual approved flame arresters
- Proven spiral wound, crimped ribbon, flame element
- Modular construction

PRESSURE / VACUUM RELIEF VALVE WITH FLAME ARRESTER (PIPE-AWAY)

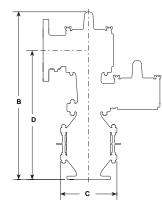
The Model 1220A/7618 combination units are used for pressure and vacuum relief where vapors must be piped away. They are designed to protect your tank from damage created by over-pressure or excessive vacuum, at the same time that they provide protection from externally caused sources of heat and ignition. The result is reduced emissions level and increased fire protection and safety.

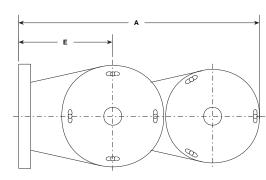

SPECIAL FEATURES

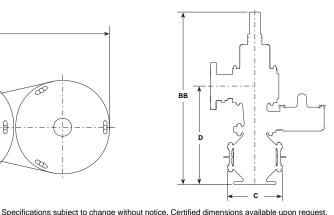
The Model 1220A Pressure/Vacuum relief valve with flanged pipe-away outlet offers Groth's special "cushioned air" seating. Superior performing Teflon^{® 1} seating diaphragms are standard to minimize sticking caused by resinous vapors and atmospheric moisture. Self draining housings and drip rings protect seating surfaces from condensate and freezing.

The wafer construction of the Model 7618 flame arrester affords easy accessibility to the flame bank for maintenance. All Groth flame arresters utilize spiral wound, crimped ribbon constructed flame elements. These proven, Factory Mutual approved elements, have been reported by NTIS of the Dept. of Commerce, to provide the best flame quenching performance for the least pressure drop. Groth flame arresters are pneumatic tested to 15 PSIG as standard.

MODEL 1220A/7618

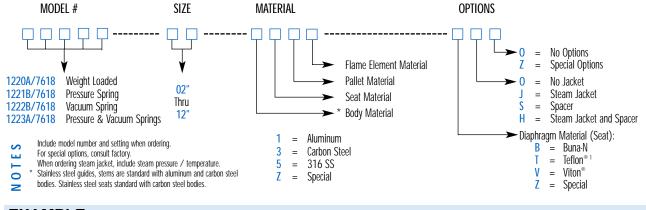



MODEL 1220A/7618


GROTH, THE CAPABILITY COMPANY

As with all Groth products, every Model 1220A/7618 is factory inspected and tested to meet your critical requirements and special needs. Inventory is maintained to insure rapid delivery.

SPECIFICATIONS



Max. Set Max. Set Max. Min. Max. W.P.[†] Min. Vac. Setting Setting Pressure Vacuum Setting for Min. R RR C D Ε Α Approx. Ship Inlet Outlet Weight Weight Spring Weight Vacuum for Length Height Height Width Wt. Lbs. Loaded Loaded Setting Max. W.P.[†] (Aluminum) Flg. Loaded Loaded Flg. (mm) (mm) (mm) (mm) (mm) (mm) 2" 3″ 141/4" 265/8" 335/8" **8**3/4″ 201/4" 51/2" 11 oz/in^2 12 oz/in² 45 (20 kg) (50 mm) (80 mm) (48.2 gm/cm²) (52.7 gm/cm²) (361) (676) (854) (221) (514) (140) 4″ 3″ 393/8" **9**1/2" 18" 311/8" 231/8" 6″ 60 13 oz/in^2 11 oz/in² See TPD2 for (80 mm) (100 mm) (57.0 gm/cm²) (48.3 gm/cm²) Vacuum Settings (457) (790) (1000) (241) (588) (152) (27 kg) SPRING LOADED PRESSURE SPRING LOADED VACUUM (0.84 kg. /cm³) and MAWP oz/in² WEIGHT LOADED (2.20 gm. /cm²) 6″ 4″ 191/4" 37" 473/8" 111/2" 263/4" 90 16 oz/in^2 11 oz/in² 61/2" (100 mm) (70.3 gm/cm²) (48.3 qm/cm²) (1203) (150 mm) (489) (940) (292) (679) (165) (41 kg) 161/2" 6″ 8″ 16 oz/in² 261/2" 443/4" **59**3/4" 311/2" 81/2" 160 16 oz/in^2 (150 mm) (200 mm) (70.3 gm/cm²) (70.3 gm/cm²) (1518) (419) (73 kg) (673) (1136) (800) (216)103/4" 321/2" 701/4" 8″ 10" PSIG 531/2" 21″ 373/8" 270 16 oz/in^2 16 oz/in² **15 PSIG** ^{*}0.5 (826) (1358) (949) (200 mm) (70.3 gm/cm²) (70.3 gm/cm²) (1784) (533) (123 kg) (250 mm) (273) 2 841/8″ 641/2" 12" 371/4" 243/4" 451/4" 121/2" 10" 420 16 oz/in^2 16 oz/in² (250 mm) (300 mm) (70.3 gm/cm²) (70.3 gm/cm²) (959) (1638) (2137) (629) (1149) (318) (190 kg) 913/8" 12" 285/8" 14" 16 oz/in^2 16 oz/in^2 423/4" 715/8" 501/8" 15" 600 (1819) (2321) (727) (1273) (300 mm) (350 mm) (70.3 gm/cm²) (70.3 gm/cm²) (1086) (381) (273 kg)

¹ W.P. = Working Pressure. ¹ On spring loaded valves, change model number. 150# R.F. drilling compatibility F.F. on aluminum and R.F. on carbon steel and stainless steel alloys. 16 oz/in² set with spacer. S.S. set weights-Consult Factory. *Some sizes require non-ferrous components to achieve 0.5 oz./sq.in. setting.

HOW TO ORDER

For easy ordering, select proper model numbers

EXAMPLE 1 2 2 0 A/7 6 1 8 - 0 2 - 1 1 5 1 - T 0 0

Indicates a 2" Model 1220A/7618 with Aluminum Body and Seat, 316 SS Pallet, Teflon®1 Seat Diaphragm Aluminum Flame Element and no other options.

¹ Telfon is a registered trademark of DuPont Corporation.

Model 1220A/7618 **Pressure Relief Capacity**

	ressure PJ	Air Flow Capacity at 100% Over-pressure (Double Set Pressure) 1000 Standard Cubic Feet per Hour at 60° F								
In WC	oz/Sq In	2″	3″	4″	6″	8″	10″	12″		
0.87	0.50	2.92	5.68	10.3	20.7	32.3	51.5	59.1		
1.00	0.58	3.19	6.34	11.5	23.3	36.2	57.6	67.8		
1.73	1.00	4.45	9.23	16.8	34.4	53.0	84.4	105		
2.00	1.16	4.84	10.1	18.5	37.8	58.2	92.6	116		
2.60	1.50	5.64	11.9	21.7	44.6	68.5	109	138		
3.00	1.73	6.12	13.0	23.7	48.8	74.8	119	151		
3.46	2.00	6.65	14.1	25.9	53.2	81.6	130	165		
4.00	2.31	7.21	15.4	28.2	58.0	88.9	141	180		
6.00	3.47	9.07	19.5	35.7	73.6	113	179	230		
8.00	4.62	10.7	23.0	42.1	86.8	133	211	272		
10.0	5.78	12.1	26.1	47.7	98.6	151	240	309		
12.0	6.93	13.3	28.9	52.9	109	167	266	343		
15.0	8.66	15.1	32.7	60.0	124	189	301	389		
20.0	11.6	17.7	38.4	70.4	146	222	354	457		
25.0	14.4	20.0	43.5	79.7	165	252	400	518		
30.0	17.3	22.2	48.1	88.2	182	278	443	574		

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

Consult Factory for flow capacity with fiberglass valve.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f = Flowing pressure$ $P_s = Set pressure$ $\% OP = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation	1.	Read flow capacity at
		set pressure from table
6" Model 1220A/7618	2.	Calculate over-pressure
4 In WC set pressure [P _s]	3.	Read "C" factor from ta

7 In WC flowing pressure [P_f]

Calculate over-pressure Read "C" factor from table 3.

4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for 75% Over-pressure at intersection of row 70 and column 5 "C" factor at 75% OP = 0.87

	"C" Factor Table											
%0P	0	1	2	3	4	5	6	7	8	9		
10												
20					Consult							
30					Factory							
40												
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78		
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84		
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89		
80	0.90	0.90	0.91	0.91	0.91	0.92	0.93	0.93	0.94	0.94		
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00		

Flow = 58,000 SCFH $\% \text{ OP} = [(7 - 4)/4] \times 100 = 75\%$

"C" = 0.87

Flow = 0.87 x 58,000 = 50,460 SCFH

Model 1220A/7618 Pressure Relief Capacity

Set Pressure (P _s)	Air F	Air Flow Capacity at 100% Over-pressure (Double Set Pressure) 1000 Normal Cubic Meters per Hour at 0° C									
mm WC	2″	3″	4″	6″	8″	10″	12″				
22.0	0.08	0.17	0.31	0.62	0.96	1.53	1.80				
50.0	0.14	0.29	0.52	1.07	1.65	2.62	3.28				
75.0	0.17	0.37	0.67	1.38	2.12	3.37	4.27				
100	0.20	0.44	0.80	1.64	2.52	4.01	5.11				
150	0.26	0.55	1.01	2.08	3.19	5.07	6.51				
200	0.30	0.65	1.19	2.46	3.76	5.98	7.70				
250	0.34	0.74	1.35	2.79	4.27	6.79	8.75				
300	0.38	0.82	1.50	3.10	4.73	7.52	9.70				
375	0.43	0.93	1.70	3.51	5.36	8.53	11.0				
500	0.50	1.09	2.00	4.12	6.29	10.0	13.0				
625	0.57	1.23	2.26	4.67	7.13	11.3	14.7				
750	0.63	1.36	2.50	5.17	7.89	12.5	16.3				

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

Consult Factory for flow capacity with fiberglass valve.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f =$ Flowing pressure $P_s =$ Set pressure $% OP = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—To find "C" factor from table:

Read "C" factor for 67% Over-pressure at intersection of row 60 and column 7 "C" factor at 67% OP = 0.82

"C" Factor Table											
%0P	0	1	2	3	4	5	6	7	8	9	
10											
20		Consult									
30		Factory									
40											
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78	
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84	
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89	
80	0.90	0.90	0.91	0.91	0.91	0.92	0.93	0.93	0.94	0.94	
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00	

Example—Flow Capacity Calculation	1.	Read flow capacity at set pressure from table	Flow = 2,080 NCMH
6" Model 1220A/7618 150 mm WC Set Pressure [Ps]		Calculate over-pressure Read "C" factor from table	% OP = [(250 - 150)/150] x 100 = 67% "C" = 0.82
250 mm WC Flowing Pressure [P _f]		Calculate flow capacity	Flow = $0.82 \times 2,080 = 1,706$ NCMH

Model 1220A/7618 Vacuum Relief Capacity

	Set Vacuum (P_s)Air Flow Capacity at 100% Over-vacuum (Double Set Va 1000 Standard Cubic Feet per Hour at 60° F							icuum)
In WC	Oz/Sq In	2″	3″	4″	6″	8″	10″	12″
0.87	0.50	2.55	5.19	8.80	17.9	28.6	44.3	53.6
1.00	0.58	2.77	5.73	9.70	19.8	31.6	48.9	60.4
1.73	1.00	3.78	8.15	13.6	28.3	45.1	69.4	89.8
2.00	1.16	4.10	8.90	14.9	31.0	49.3	75.8	99.0
2.60	1.50	4.74	10.4	17.4	36.2	57.7	88.6	117
3.00	1.73	5.14	11.3	18.9	39.5	62.9	96.0	128
3.46	2.00	5.56	12.3	20.5	42.9	68.4	105	139
4.00	2.31	6.03	13.4	22.3	46.7	74.4	114	152
6.00	3.47	7.54	16.9	28.1	58.9	93.8	144	193
8.00	4.62	8.84	19.9	33.0	69.4	110	169	227
10.0	5.78	10.0	22.5	37.4	78.6	125	192	258
12.0	6.93	11.1	24.9	41.5	87.1	139	212	286
15.0	8.66	12.5	28.2	46.9	98.6	157	240	324
20.0	11.6	14.7	33.1	55.1	116	184	282	381
25.0	14.4	16.6	37.5	62.3	131	209	319	432
30.0	17.3	18.3	41.5	68.9	145	231	353	478

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

Consult Factory for flow capacity with fiberglass valve.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OV} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}})/\mathsf{P}_{\mathsf{s}}\right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation	1.	Read flow capacity at
		set vacuum from table
6" Model 1220A/7618	2.	Calculate over-vacuum
4 In WC set vacuum [P _s]	3.	Read "C" factor from table
7 In WC flowing vacuum [P _f]	4.	Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for **75%** Over-vacuum at intersection of row **70** and column **5** "C" factor at 75% OV = 0.87

	"C" Factor Table											
%0V	0	1	2	3	4	5	6	7	8	9		
10												
20		Consult										
30					Factory							
40				_								
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78		
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84		
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89		
80	0.90	0.90	0.91	0.91	0.91	0.92	0.93	0.93	0.94	0.94		
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00		

Flow = 46,700 SCFH % OV = [(7 - 4)/4] x 100 = 75%

"C" = 0.87

Flow = 0.87 x 46,700 = 40,629 SCFH

Model 1220A/7618 Vacuum Relief Capacity

Set Vacuum (P _s)	Air Flow Capacity at 100% Over-vacuum (Double Set Vacuum) 1000 Normal Cubic Meters per Hour at 0° C						
mm WC	2″	3″	4″	6″	8″	10″	12″
22.0	0.07	0.15	0.26	0.52	0.84	1.29	1.60
50.0	0.12	0.25	0.42	0.87	1.39	2.13	2.78
75.0	0.14	0.32	0.53	1.11	1.77	2.72	3.59
100	0.17	0.38	0.63	1.32	2.09	3.21	4.27
150	0.21	0.48	0.79	1.66	2.64	4.05	5.42
200	0.25	0.56	0.93	1.95	3.11	4.76	6.40
250	0.28	0.63	1.05	2.21	3.53	5.40	7.27
300	0.31	0.70	1.17	2.45	3.90	5.97	8.06
375	0.35	0.80	1.32	2.78	4.42	6.77	9.10
500	0.41	0.93	1.55	3.26	5.19	7.94	10.7
625	0.47	1.06	1.76	3.69	5.87	8.98	12.2
750	0.52	1.17	1.94	4.08	6.50	9.90	13.5

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

Consult Factory for flow capacity with fiberglass valve.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OV} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}}) / \mathsf{P}_{\mathsf{s}} \right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation

alculation 1. Read flow capacity at

- 6" Model 1220A/7618 150 mm WC Set Vacuum $[P_{s}]$ 250 mm WC Flowing Vacuum $[P_{f}]$
- set vacuum from table 2. Calculate over-vacuum 3. Read "C" factor from table
- 4. Calculate flow capacity

Flow = 1,660 NCMH % 0V = $[(250 - 150)/150] \times 100 = 67\%$ able "C" = 0.82 Flow = 0.82 \times 1,660 = 1,361 NCMH

Example—To find "C" factor from table: Read "C" factor for 67% Over-vacuum at intersection of row 60 and column 7 "C" factor at 67% OV = 0.82

	"C" Factor Table									
%0V	0	1	2	3	4	5	6	7	8	9
10										
20		Consult								
30		Factory								
40										
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89
80	0.90	0.90	0.91	0.91	0.91	0.92	0.93	0.93	0.94	0.94
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00

PRESSURE / VACUUM RELIEF VALVE

Fiberglass Relief Valves

- Groth provides fiberglass products for corrosive service
- Available in Series 1200A, 1300A, 2000A and others

FIBERGLASS SERIES 1200A, 1300A, 2000A, AND OTHERS

Fiberglass valves are used the same as their counter parts manufactured in metal, primarily on above ground storage tank installations. Fiberglass construction can be used where highly corrosive and toxic liquids are being stored. The Fiberglass series design will protect the tank from damage created by overpressuring or excessive vacuum. Costly product evaporation losses due to normal tank "breathing" are greatly reduced. Retention of product vapors, reduces the possibility of atmospheric contamination.

SPECIAL FEATURES

Fiberglass valves offer Groth's special "cushioned air" seating. Superior performing Teflon®1 seating diaphragms are standard to minimize sticking caused by resinous vapors and atmospheric moisture. These valves have a self draining housing body and drip rings to protect seating surfaces from condensate and freezing. This design also avoids pressure or vacuum buildup due to binding or clogging of the valves. These Fiberglass valves may be spring loaded when required for use on blanketed tank or other type installations requiring higher settings. To insure the proper alignment of seating surfaces there is peripheral guiding and a center stabilizing stem.

GROTH, THE CAPABILITY COMPANY

As with all Groth products, every valve is factory inspected and tested to meet your critical requirements and special needs.

MODEL 2050

MODEL 1220A

CORROSION RESISTANCE

FIBERGLASS WITH VINYL ESTER RESIN #411

RESISTANT

FIBERGLASS WITH FURAN RESIN

RESISTANT

RESIS	IANI	RESISTANT			
ACIDS: Acetic Acrylic Boric Chromic (20%) Formic Hydrochloric Hydrochloric * Nitric (All Conc.) Perchloric Phosphoric Sulfuric (75%)	BASES: Potassium Hydroxide Sodium Hydroxide * Ammonium Hydroxide * Ammonium Carbonate Potassium Carbonate * Sodium Carbonate * WATER: Demineralized Distilled	ACIDS: Acetic Acrylic Chlorophenol Hydrochloric BASES: Aniline Diethylamine 50%) Potassium Carbonate	Nitric (5%) Phosphoric Sulfonic Sulfuric (25%, 50%) Sodium Carbonate Sodium Hydroxide (5%,		
SALTS: Alum Ammonium Chloride Calcium Chloride	OTHERS: Alcohols Alum Chlorohydroxide Glycerin Sulfonated Detergents	SALTS: Alum Ammonium Bromide Calcium Chloride	Ferric Chloride Magnesium Sulfate Sodium Chromate		
Ferric Chloride Magnesium Sulfate Sodium Chloride	Urea-Ammonium Nitrate Fertilizers	WATER: Demineralized	Distilled		
Sodium Chromate BLEACHING AGENTS: Calcium Chlorate Calcium Hypochlorite Chlorine Dioxide Chlorine Water Hydrogen Peroxide Potassium		SOLVENTS: Acetone Benzene Carbon Disulfide Carbon Tetrachloride Chlorobenzene Ethanol Ethyl Acetate Ethylene Dichloride	Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone Perchloroethylene Toluene Trichloroethylene Xylene		
Permanganate Sodium Chlorate Sodium Hypochlorite		OTHERS: Acrylonitrile Benzyl Chloride Cyclohexanone Formalin	Pulp Mill Liquors Styrene Toluene Diisocyanate		
NON RE	SISTANT	NON R	ESISTANT		
Solvents Oleum	Phenol Bromine Furfural	Bleaching Agents Free Halogens	Peroxides		
* Synthetic Veil should be	used in inner layer.				

Dimensional drawings on request.

Chemical resistance information provided by Dow Chemical (Vinyl Ester Resin) and Qua Corr (Furan).

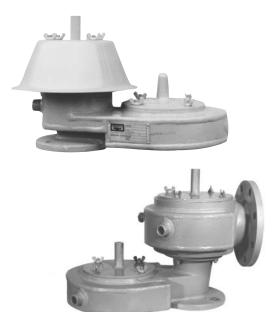
For Flow Data see corresponding Model Brochure.

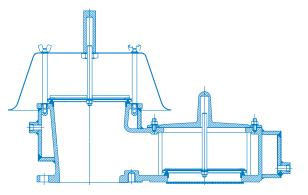
Consult a chemical resistance guide or handbook for additional material compatability information.

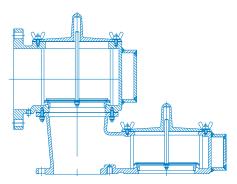
PRESSURE / VACUUM RELIEF VALVE Steam Jacketed Valves

- Prevents freezing and product buildup
- Designed for easy maintenance
- Available for most models (consult factory)

STEAM JACKETED VALVES

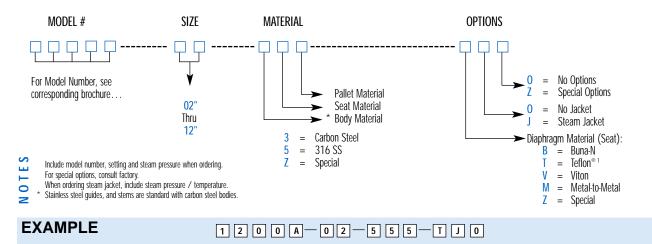

Steam Jacketed Valves are designed for use on tanks containing liquids whose vapors may crystallize at normal temperature. They afford protection against valve clogging. Uniform heating of the housing and valves assures the valve will remain in operating condition. Available on model numbers 1200A, 1220A, 1260A, 1300A, 1360A, 2000A, 2300A, and 2400A.


SPECIAL FEATURES


Steam Jacketed Valves are built of corrosion resistant materials throughout. Valve covers can be easily removed for convenient inspection and maintenance. Steam heated valves are suitable for steam circulation up to 100 PSIG saturated.

GROTH, THE CAPABILITY COMPANY

As with all Groth products, every Steam Jacketed Valve is factory inspected and tested to meet your critical requirements and special needs.



HOW TO ORDER

For easy ordering, select proper model numbers

Indicates a 2" Model 1200 with 316 SS Body, Seat and Pallet, Teflon^{®1} Seat Diaphragm, Steam Jacketed and no other options.

¹ Telfon is a registered trademark of DuPont Corporation.

SECTION 2 FLAME ARRESTERS

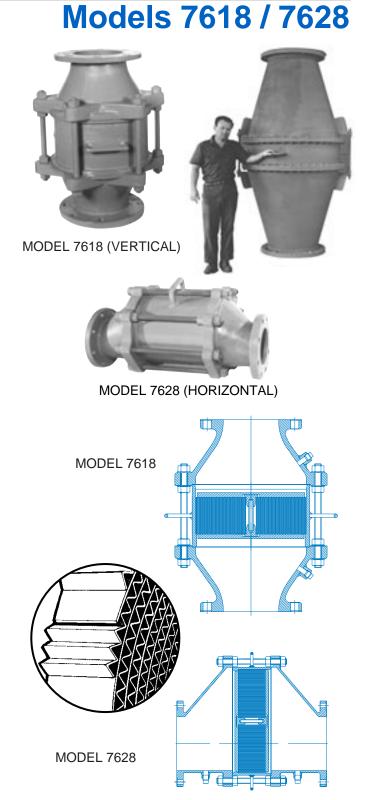
- 7618, 7628 Flame Arrester
 - 7622 Flame Check •
- **Steam Jacketed Flame Arresters**
 - 7658A Detonation Arrester •
- 8400A Pressure Relief and Flame Trap Assembly
 - Flame Trap Assembly •
 - **Back Pressure Check Valve**

FLAME ARRESTERS

Sizes 2" through 60"

- Available in, carbon steel, stainless steel aluminum (type 356) and other materials
- Wafer design for quick and easy maintenance
- Unique recessed seating for superior protection
- Factory Mutual approval for most sizes and materials
- Proven spiral wound, crimped ribbon, flame element

FLAME ARRESTER

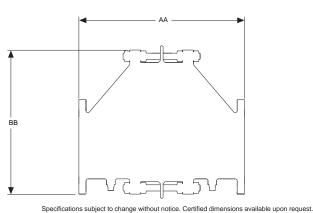

Both models are designed to inhibit flame propagation in gas piping systems and to protect low pressure tanks containing flammable liquids. Arresters protect low flash point liquids from externally caused sources of heat and ignition. This provides increased fire protection and safety.

SPECIAL FEATURES

Both models are built of corrosion resistant materials throughout. Wafer design construction affords easy accessibility to the flame bank. Additionally, jack screws aid in the removal from the shell assembly. All Groth flame arrester flame banks utilize spiral wound, crimped ribbon constructed flame elements. These proven, Factory Mutual approved elements have been reported, by NTIS of the Dept. of Commerce, to provide the best flame quenching performance for the least pressure drop. Groth's special recessed flame bank seating construction uniquely provides an extra measure of protection against leakage and possible flame propagation.

GROTH, THE CAPABILITY COMPANY

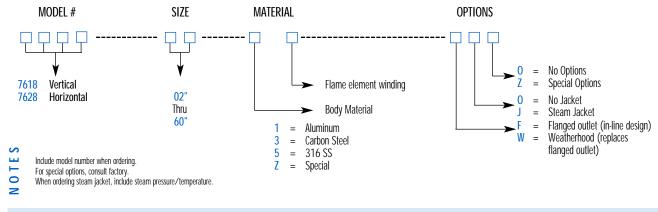
As with all Groth products, every Flame Arrester is factory inspected and tested to meet all critical requirements and special needs. Inventory is maintained to insure rapid delivery.



Note:

All Groth Flame Arresters are Bi-directional. Factory Mutual regulates that Flame arresters be installed less than 10 pipe diameters from the source of ignition.

SPECIFICATIONS



Size*†	A Width (mm)	B Height (mm)	AA Length (mm)	BB Height (mm)	MAWP 7618 Aluminum (mm)	MAWP 7618 Carbon or SS (mm)	MAWP 7628 Aluminum (mm)	MAWP 7628 Carbon or SS (mm)	Approx. Ship. Wt. Lbs. (Aluminum)
2"	8 ^{3/4} "	14″	13 ^{3/4} "	9 ^{1/2} "	50 PSIG	100 PSIG	150 PSIG	350 PSIG	18
(51 mm)	(221)	(356)	(349)	(241)	(345 kPa)	(690 kPa)	(1035 kPa)	(2415 kPa)	(8kg)
3″	9 1/2 "	16"	15 ^{3/4} "	11″	50 PSIG	100 PSIG	140 PSIG	325 PSIG	25
(76 mm)	(241)	(406)	(400)	(279)	(345 kPa)	(690 kPa)	(966 kPa)	(2242 kPa)	(11 kg)
4″	11 ^{1/2} "	18 ^{1/4} ″	18″	12 ^{1/2} "	50 PSIG	100 PSIG	140 PSIG	325 PSIG	40
(102 mm)	(292)	(464)	(457)	(318)	(345 kPa)	(690 kPa)	(966 kPa)	(2242 kPa)	(18 kg)
6″	16 ^{1/2} "	21″	21″	16 ^{1/2} "	50 PSIG	100 PSIG	140 PSIG	325 PSIG	70
(152 mm)	(419)	(533)	(533)	(419)	(345 kPa)	(690 kPa)	(966 kPa)	(2242 kPa)	(32 kg)
8″	21″	25"	25″	20 ^{1/2} "	50 PSIG	100 PSIG	90 PSIG	200 PSIG	135
(203 mm)	(533)	(635)	(635)	(521)	(345 kPa)	(690 kPa)	(621 kPa)	(1380 kPa)	(61 kg)
10"	24 ^{3/4} "	30″	30″	24 ^{1/2} "	50 PSIG	100 PSIG	75 PSIG	150 PSIG	235
(254 mm)	(629)	(762)	(762)	(622)	(345 kPa)	(690 kPa)	(517 kPa)	(1035 kPa)	(107 kg)
12"	28 ^{5/8} ″	32 ^{1/2} "	32 ^{1/2} "	28 ^{1/2} "	50 PSIG	100 PSIG	75 PSIG	150 PSIG	345
(305 mm)	(727)	(826)	(826)	(724)	(345 kPa)	(690 kPa)	(517 kPa)	(1035 kPa)	(156 kg)

* Larger sizes available on special application. 150# A.N.S.I. drilling compatibility, F.F. on aluminum and R.F. on carbon steel and stainless steel alloys. Pneumatic tested to 15 PSI as standard.

HOW TO ORDER

For easy ordering, select proper model numbers

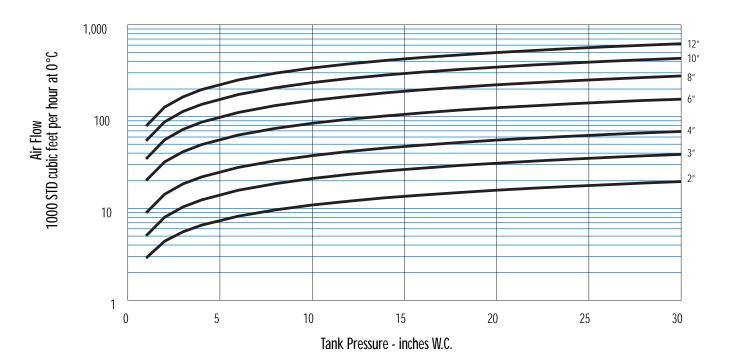
EXAMPLE

7 6 2 8 0 2 1 5 F 0 0

Indicates a 2" Model 7628 with Aluminum Body, 316 SS Flame Element Winding, Flanged Outlet and no other options.

Model 7618 / 7628 Flow Capacity

End of Line


Tank F	Pressure		Air Flo	w - 1000 S	Standard C	ubic feet p	er Hour	
In W.C.	oz/sq in	2″	3″	4″	6″	8″	10″	12″
1	0.6	2.89	5.05	8.98	20.2	34.7	54.7	79.1
2	1.2	4.40	8.03	14.3	32.1	55.9	87.8	127
3	1.7	5.58	10.4	18.5	41.5	72.7	114	164
4	2.3	6.57	12.4	22.0	49.5	87.0	136	197
6	3.5	8.25	15.8	28.0	63.1	111	174	251
8	4.6	9.66	18.6	33.1	74.5	132	206	297
10	5.8	10.9	21.2	37.6	84.7	150	235	338
12	6.9	12.0	23.5	41.7	93.8	166	260	375
14	8.1	13.1	25.6	45.5	102	182	284	409
16	9.2	14.0	27.5	49.0	110	196	306	441
18	10.4	14.9	29.4	52.2	118	209	327	470
20	11.6	15.8	31.1	55.4	125	222	346	499
22	12.7	16.6	32.8	58.3	131	234	365	525
24	13.9	17.4	34.4	61.1	138	245	383	551
26	15.0	18.1	35.9	63.9	144	256	400	576
28	16.2	18.9	37.4	66.5	150	267	416	599
30	17.3	19.6	38.8	69.0	155	277	432	622

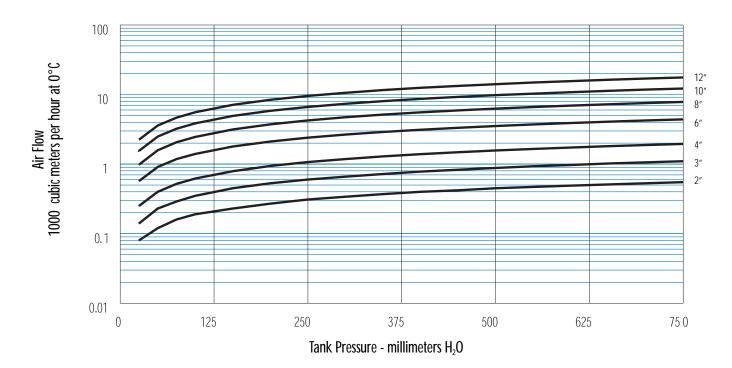
1. Flow facility and equipment comply with API 2000.

2. Flow measurement accuracy verified by an independant research organization.

3. Flow capacity is based on actual tests and certified by Groth Corporation.

4. Flow data are for tank mounting or end of line and includes flame arrester entrance loss, exit loss, and internal losses.

Model 7618 / 7628 Flow Capacity


End of Line

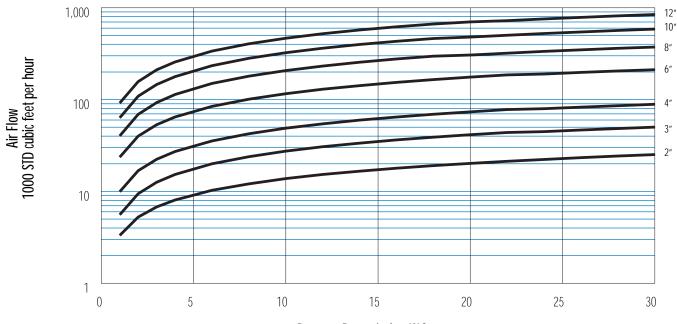
Tank P	ressure		Air Flov	v - 1000 C	ubic Meter	rs per Hou	r at 0°C	
mm H ₂ O	mb	2″	3″	4″	6″	8″	10″	12″
25	2.45	0.08	0.14	0.25	0.57	0.98	1.55	2.24
50	4.90	0.12	0.23	0.40	0.91	1.58	2.49	3.59
75	7.35	0.16	0.29	0.52	1.18	2.06	3.23	4.66
100	9.80	0.19	0.35	0.62	1.40	2.46	3.86	5.57
150	14.7	0.23	0.45	0.79	1.79	3.15	4.93	7.11
200	19.6	0.27	0.53	0.94	2.11	3.73	5.84	8.42
250	24.5	0.31	0.60	1.07	2.40	4.25	6.64	9.57
300	29.4	0.34	0.66	1.18	2.66	4.72	7.37	10.6
350	34.3	0.37	0.72	1.29	2.90	5.15	8.04	11.6
400	39.2	0.40	0.78	1.39	3.12	5.55	8.67	12.5
450	44.1	0.42	0.83	1.48	3.33	5.92	9.25	13.3
500	49.0	0.45	0.88	1.57	3.53	6.28	9.81	14.1
550	53.9	0.47	0.93	1.65	3.72	6.62	10.3	14.9
600	59	0.49	0.97	1.73	3.90	6.94	10.8	15.6
650	64	0.51	1.02	1.81	4.07	7.25	11.3	16.3
700	69	0.53	1.06	1.88	4.24	7.55	11.8	17.0
750	74	0.55	1.10	1.95	4.40	7.84	12.2	17.6

1. Flow facility and equipment comply with API 2000.

Flow measurement accuracy verified by an independant research organization.
 Flow capacity is based on actual tests and certified by Groth Corporation.

4. Flow data are for tank mounting or end of line and includes flame arrester entrance loss, exit loss, and internal losses.

Model 7628 / 7618 Flow Capacity


In-Line

Press	ure Drop		Air Flo	w - 1000 S	Standard C	ubic feet p	er Hour	
In W.C.	oz/sq in	2″	3″	4″	6″	8″	10″	12″
1	0.6	3.32	5.58	9.92	23.6	40.2	63.4	91.8
2	1.2	5.27	9.44	16.8	40.0	69.1	109	157
3	1.7	6.79	12.6	22.4	53.3	93.0	146	211
4	2.3	8.08	15.3	27.2	64.8	113.8	178	257
6	3.5	10.3	20.0	35.5	84.5	150	234	337
8	4.6	12.1	23.9	42.5	101	180	282	405
10	5.8	13.8	27.5	48.8	116	207	324	466
12	6.9	15.3	30.7	54.5	130	232	363	522
14	8.1	16.6	33.6	59.8	142	255	398	573
16	9.2	17.9	36.4	64.7	154	277	431	620
18	10.4	19.1	39.0	69.3	165	297	463	665
20	11.6	20.2	41.5	73.7	176	306	480	701
22	12.7	21.3	43.8	77.9	186	320	502	723
24	13.9	22.3	44.8	79.7	190	335	524	756
26	15.0	23.3	46.6	82.9	198	348	545	786
28	16.2	24.3	48.4	86.0	205	362	566	816
30	17.3	25.2	50.1	89.1	212	374	586	845

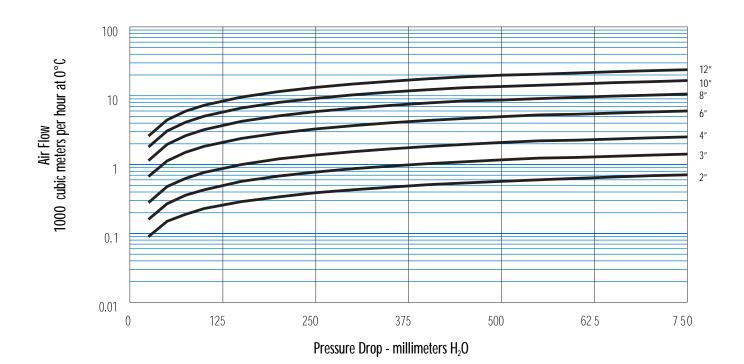
Flow facility and equipment comply with API 2000.
 Flow measurement accuracy verified by an independant research organization.

3. Flow capacity is based on actual tests and certified by Groth Corporation.

4. Flow data are for in-line mounting and does not include entrance losses or exit losses.

Pressure Drop - inches W.C.

Model 7628 / 7618 Flow Capacity


In-Line

Pressu	re Drop		Air Flov	v - 1000 C	ubic Meter	rs per Hou	r at 0°C	
mm H ₂ O	mb	2″	3″	4″	6″	8″	10″	12″
25	2.45	0.09	0.16	0.28	0.67	1.14	1.80	2.60
50	4.90	0.15	0.27	0.48	1.13	1.96	3.08	4.45
75	7.35	0.19	0.36	0.63	1.51	2.63	4.13	5.97
100	9.80	0.23	0.43	0.77	1.84	3.22	5.05	7.29
150	14.7	0.29	0.57	1.00	2.39	4.24	6.63	9.55
200	19.6	0.34	0.68	1.21	2.87	5.10	7.98	11.5
250	24.5	0.39	0.78	1.38	3.29	5.88	9.18	13.2
300	29.4	0.43	0.87	1.54	3.68	6.58	10.3	14.8
350	34.3	0.47	0.95	1.69	4.04	7.23	11.3	16.2
400	39.2	0.51	1.03	1.83	4.37	7.84	12.2	17.6
450	44.1	0.54	1.10	1.96	4.68	8.41	13.1	18.8
500	49.0	0.57	1.17	2.09	4.97	8.66	13.6	19.9
550	53.9	0.60	1.24	2.21	5.26	9.08	14.2	20.5
600	59	0.63	1.27	2.26	5.38	9.48	14.8	21.4
650	64	0.66	1.32	2.35	5.60	9.87	15.5	22.3
700	69	0.69	1.37	2.44	5.81	10.2	16.0	23.1
750	74	0.71	1.42	2.52	6.01	10.6	16.6	23.9

1. Flow facility and equipment comply with API 2000.

2. Flow measurement accuracy verified by an independant research organization.

Flow capacity is based on actual tests and certified by Groth Corporation.
 Flow data are for in-line mounting and does not include entrance losses or exit losses.

Groth Corporation, a Continental Disc company, Stafford, TX, USA

205

FLAME CHECKS Model 7622

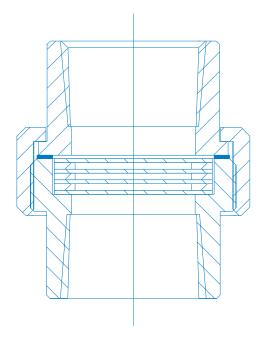
 Sizes 1/2" through 1-1/2"
 Available with carbon and stainless steel housing and stainless steel element (perforated plate construction)

Designed for easy maintenance

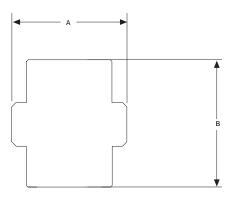
FLAME CHECKS

Model 7622 is designed to prevent flashback in small lines carrying flammable gases. They are often used in small pilot lines and are intended for use where the gas flow can be shut off. The Flame Checks are union type fittings with FNPT connections.

SPECIAL FEATURES


The Model 7622 flame element consists of perforated plates with sufficient openings to provide a minimum pressure drop and still prevent flash back in the line. The construction permits easy access for inspection and maintenance.

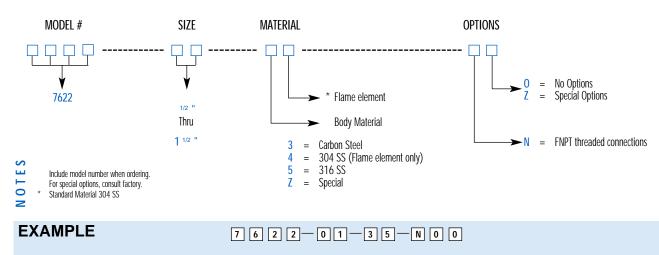
GROTH, THE CAPABILITY COMPANY


As with all Groth products every Model 7622 is factory inspected and tested to meet your critical requirements and special needs. Inventory is maintained to insure rapid delivery.

MODEL 7622

SPECIFICATIONS

Specifications subject to change without notice. Certified dimensions available upon request.

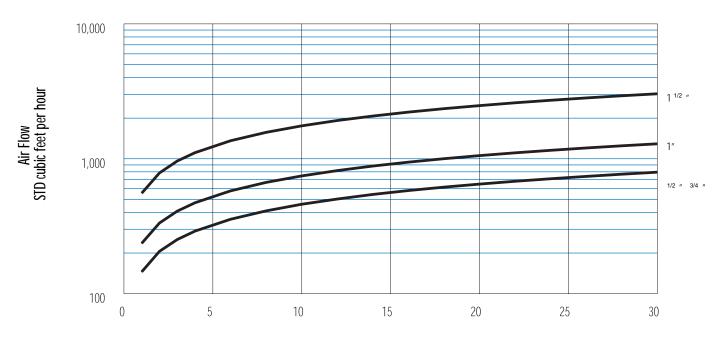

Size (FNPT)	A Width (mm)	B Height (mm)	Approximate Shipping Weight Lbs.
1/2 //*	1 7/8 ″	2.77″	1
(13 mm)	(48)	(70)	(.5 kg)
3/4 "	1 7/8 ″	1.84″	1
(19 mm)	(48)	(47)	(.5 kg)
1″	2 1/8 ″	2.34″	3
(25 mm)	(54)	(59)	(1.4 kg)
1 1/2 ″	2 1/2 "	2.59″	4
(38 mm)	(64)	(66)	(1.8 kg)

* 1/2 " size utilizes a 3/4 " flame check with 3/4 " x 1/2 " reducers.

Note: Maximum working pressure 25 PSIG

HOW TO ORDER

For easy ordering, select proper model numbers

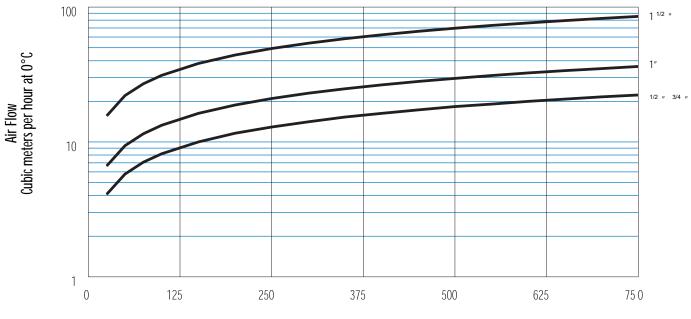

Indicates a 1" Model 7622 with Carbon Steel, 316 SS Flame Element, FNPT connections and no options.

Model 7622 Flow Capacity

Press	ure Drop	Air Flow -	Standard Cubic fee	t per Hour
In W.C.	oz/sq in	¹ / ₂ & ³ / ₄ "	1″	1 ½″
1	0.6	145	236	555
2	1.2	206	334	785
3	1.7	252	409	962
4	2.3	291	472	1110
6	3.5	356	578	1360
8	4.6	411	668	1570
10	5.8	460	746	1755
12	6.9	503	817	1922
14	8.1	544	883	2075
16	9.2	581	944	2218
18	10.4	616	1001	2353
20	11.6	649	1055	2479
22	12.7	681	1106	2600
24	13.9	711	1155	2715
26	15.0	740	1202	2825
28	16.2	768	1247	2932
30	17.3	795	1290	3034

Flow facility and equipment comply with API 2000.
 Flow measurement accuracy verified by an independant research organization.

3. Flow capacity is based on actual tests and certified by Groth Corporation.


Tank Pressure - inches W.C.

Model 7622 Flow Capacity

Pressur	e Drop	Air Flow-Cu	ubic meters per Hou	r at 0°C
mm H₂0	mb	¹ / ₂ & ³ / ₄ "	1″	1 ¹ / ₂ ″
25	2.45	4.09	6.64	15.6
50	4.90	5.78	9.39	22.1
75	7.35	7.08	11.5	27.0
100	9.80	8.17	13.3	31.2
150	14.7	10.0	16.3	38.2
200	19.6	11.6	18.8	44.1
250	24.5	12.9	21.0	49.3
300	29.4	14.1	23.0	54.0
350	34.3	15.3	24.8	58.3
400	39.2	16.3	26.5	62.3
450	44.1	17.3	28.1	66.1
500	49.0	18.3	29.6	69.7
550	53.9	19.1	31.1	73.1
600	59	20.0	32.5	76.3
650	64	20.8	33.8	79.4
700	69	21.6	35.0	82.4
750	74	22.3	36.3	85.3

Flow facility and equipment comply with API 2000.
 Flow measurement accuracy verified by an independant research organization.

3. Flow capacity is based on actual tests and certified by Groth Corporation.

Tank Pressure - millimeters H₂0

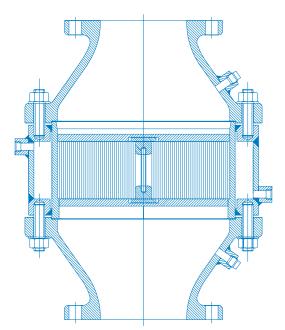
FLAME ARRESTERS Steam Jacketed

Prevents freezing and product buildup

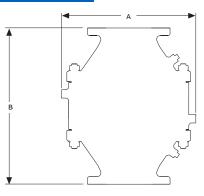
STEAM JACKETED FLAME ARRESTERS

Steam Jacketed Flame Arresters are designed for use on tanks containing liquids whose vapors may crystallize at normal temperatures. Steam Jacketing protects the flame arrester bank element from clogging.

SPECIAL FEATURES

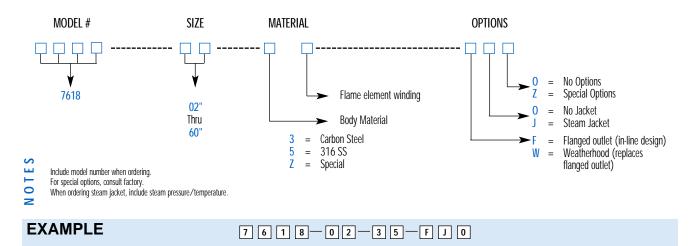

Steam Jacketed Flame Arresters are built of corrosion resistant materials throughout. Jacketed flame arresters are suitable for saturated steam up to 100 PSIG.

GROTH, THE CAPABILITY COMPANY


As with all Groth products, every Steam Jacketed Flame Arrester is factory inspected and tested to meet your critical requirements and special needs. Inventory is maintained to insure rapid delivery.

MODEL 7618

SPECIFICATIONS


Specifications subject to change without notice. Certified dimensions available upon request.

Size*† Flange	A Width (Metric)	B Height (Metric)	Approx. Ship. Wt. Lbs.
2″	12 ^{5/8} "	13 ^{3/4} "	22
(51 mm)	(321)	(349)	(10 kg)
3″	12 ^{5/8} "	15 ^{3/4} ″	31
(76 mm)	(321)	(400)	(14 kg)
4″	14 ⁵⁷⁸ "	18 ″	50
(102 mm)	(372)	(457)	(23 kg)
6″	17 ^{7/8} ″	21″ (533)	88
(152 mm)	(454)		(40 kg)
8″	25 ^{7/8} "	25"	170
(203 mm)	(657)	(635)	(77 kg)
10"	29 ^{7/8} "	30 ″	290
(254 mm)	(759)	(762)	(132 kg)
12"	31 ^{7/8} "	32 ^{1/2} " (826)	430
(305 mm)	(810)		(195 kg)

* Larger sizes available on special application. 150# A.N.S.I. drilled compatibility, F.F. on aluminum and R.F. on carbon steel and stainless steel alloys.

HOW TO ORDER

For easy ordering, select proper model numbers

Indicates a 2" Model 7618 with Carbon Steel Body, 316 SS Flame Element Winding, Flanged Outlet, Steam Jacket and no other options.

DETONATION FLAME ARRESTER Model 7658A


Pre-ignition

Ignition

Confined Deflagration

Detonation

Arrested

Pressure Wave

- USCG Approved
- Successfully Tested to Procedures Approved by USCG, IMO & CSA
 - Multiple Flow Selections per pipe size
 - In-line Maintenance Available

Video Sequence of Detonation

INTRODUCTION

GROTH CORPORATION HAS PROVIDED THE MOST RELIABLE FIRE PREVENTION EQUIPMENT SINCE 1971.

As the industry leader in supplying fire protection equipment for liquid storage and the handling of flammable vapors, Groth Corporation has developed a complete line of deflagration and detonation flame arresters.

To verify the function and reliability of these arresters, Groth has installed a state of the art facility, capable of performing tests under any condition of vapor medium, system pressure and temperature, ignition and flame propagation characteristics and test specifications.

The Groth Model 7658A has been successfully tested to USCG and IMO standards for detonation flame arresters. Groth can provide additional testing under your specific operating conditions.By utilizing multiple flame element diameters for each pipe size, an arrester can be sized to provide your required flow capacity at minimum cost.

New and innovative solutions are constantly being developed at Groth Corporation. Groth will continue to provide the best available pressure/vacuum relief and fire prevention equipment for your liquid storage and vapor handling facilities.

Burn Test

FEATURES

- Sizes 2" through 24" (2" through 12" USCG approved).
- Low pressure drop with multiple element sizes available for each flange size.
- Easy cleaning.
- Bi-directional flame arresting.
- Vertical or horizontal installation.
- Standard materials of construction are carbon steel or stainless steel.
- 316 SS element is standard

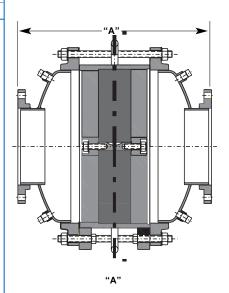
Options

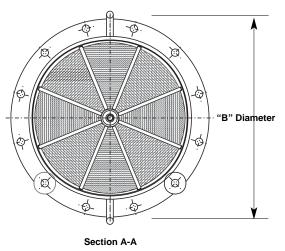
- In-line cleaning
- Large inspection and cleaning ports.
- Swing bolts for fast element removal.
- Special and exotic materials available.
- Testing to customer specifications available.

SPECIFICATIONS

Specifications subject to change without notice. Certified dimensions available upon request.

SIZE *	2″x5″	3″x6″	4″x8″	6″x12″	8″x16″	10″x20″	12″x24″
	(50 mm)	(80 mm)	(100 mm)	(150 mm)	(200 mm)	(250 mm)	(300 mm)
"A" Length	17.19	20.31	22.43	25.75	29.63	32.43	38.19
(metric)	(437)	(516)	(570)	(654)	(753)	(824)	(970)
"B" Diameter	9.00	11.00	13.50	19.00	23.50	27.50	32.00
(metric)	(229)	(279)	(343)	(483)	(597)	(699)	(813)
Estimated Weight	100	225	350	625	1200	1500	1800
(metric)	(45 kg)	(102 kg)	(159 kg)	(284 kg)	(545 kg)	(682 kg)	(818 kg)

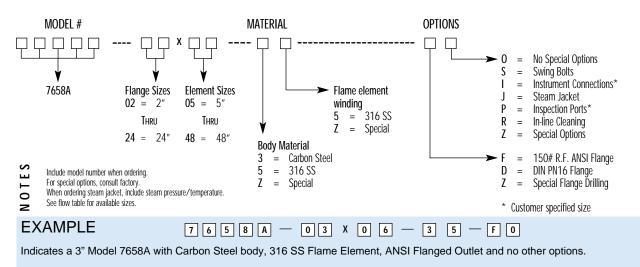

* Larger sizes available on special application. All units with ANSI 150 RF flanges standard. (other flange drillings available)


FLOW CAPACITY

	Air Flow Capacity 1000 Standard Cubic Feet per Hour at 60° F																
								9.24 16	11.6 20	13.9 24	16.0 27.7						
	2 2 2		5 6 8	0.63 0.89 1.48	1.08 1.50 2.40	1.24 1.72 2.72	1.82 2.50 3.81	2.08 2.84 4.27	2.39 3.23 4.79	3.46 4.60 6.54	4.48 5.85 8.07	5.45 7.02 9.46	6.37 8.12 10.7	8.11 10.1 13.0	9.72 12.0 15.1	11.2 13.7 17.0	12.6 15.2 18.6
	3 3 3 3		6 8 10 12	0.92 1.61 2.43 3.32	1.58 2.73 4.05 5.40	1.82 3.14 4.63 6.11	2.70 4.60 6.64 8.57	3.11 5.25 7.52 9.61	3.57 6.00 8.52 10.8	5.27 8.66 11.9 14.7	6.90 11.1 15.0 18.2	8.49 13.5 17.9 21.3	10.0 15.7 20.5 24.1	13.0 19.9 25.4 29.3	15.8 23.7 29.7 33.9	18.5 27.3 33.7 38.2	20.9 30.4 37.2 41.8
ZE	4 4 4 4	DIAMETER	8 10 12 16	1.63 2.52 3.57 5.91	2.81 4.30 6.01 9.60	3.23 4.95 6.88 10.9	4.81 7.29 9.99 15.2	5.52 8.34 11.4 17.1	6.35 9.55 12.9 19.2	9.36 13.9 18.4 26.1	12.3 17.9 23.4 32.3	15.1 21.8 28.1 37.8	17.8 25.5 32.5 42.9	23.1 32.4 40.5 52.1	28.1 38.9 47.9 60.3	32.9 44.9 54.7 67.8	37.2 50.2 60.7 74.3
NOMINAL PIPE SIZE	6 6 6	ELEMENT DI	12 16 20 24	3.67 6.43 9.72 13.3	6.31 10.9 16.2 21.6	7.3 12.5 18.5 24.5	10.8 18.4 26.6 34.3	12.4 21.0 30.1 38.4	14.3 24.0 34.1 43.1	21.1 34.6 47.8 58.8	27.6 44.6 60.1 72.6	34.0 53.9 71.5 85.1	40.2 62.8 82.1 96.6	52.0 79.4 101 117	63.3 94.8 119 136	74.1 109 135 153	83.7 122 149 167
IMON	8 8 8 8 8	NOMINAL E	16 20 24 30	6.53 10.1 14.3 21.2	11.2 17.2 24.0 34.9	12.9 19.8 27.5 39.6	19.2 29.1 40.0 56.0	22.1 33.3 45.4 63.0	25.4 38.2 51.7 70.9	37.4 55.4 73.6 97.7	49.1 71.7 93.6 121	60.4 87.2 112 143	71.4 102 130 163	92.5 130 162 199	113 156 192 231	132 180 219 261	149 201 243 286
	10 10 10 10		20 24 30 42	10.2 14.6 22.3 39.9	17.5 24.9 37.5 64.3	20.2 28.7 43.0 72.7	30.0 42.3 62.4 101	34.5 48.4 71.0 113	39.7 55.5 80.8 126	58.5 80.9 115 171	76.7 105 146 210	94.4 128 175 246	112 150 203 278	145 191 253 336	176 230 299 388	206 267 342 435	233 299 379 476
	12 12 12 12 12		24 36 42 48	14.7 32.1 42.4 53.2	25.2 54.1 70.3 86.4	29.1 61.9 80.1 97.8	43.3 89.9 114 137	49.7 102 129 154	57.2 116 146 172	84.2 166 203 235	110 211 254 291	136 253 301 340	161 292 345 386	208 365 424 469	253 431 495 543	297 493 560 610	335 546 616 668

Note: Contact factory for flow on other sizes.

hsng	é	a	ł	C	v	vt
size	in	mm	in	mm	lbs	kg
5"	17.19	437	9.00	229	75	34
6"	20.31	516	11.00	279	100	45
8"	22.43	570	13.50	343	175	79
12"	25.94	659	19.00	483	350	159
16"	29.63	753	23.50	597	550	249
20"	32.43	824	27.50	699	850	386
24"	38.75	984	32.00	813	1200	544
28"	35.75	908	36.50	927	1600	726
30"	42.88	1086	38.75	984	1900	862
32"	39.25	997	41.75	1060	2200	998
36"	42.00	1067	46.00	1219	2900	1315
42"	50.00	1270	53.00	1346	4100	1860
48"	56.00	1422	59.50	1511	5300	2404



	Air Flow Capacity Cubic Meters per Hour at 0° C															
		op [mm WC] Drop [mbar]		40.7 4	61.1 6	81.5 8	102 10	153 15	204 20	255 25	306 30	356 35	407 40	509 50	611 60	713 70
	2 2 2	5 6 8	14.8 21.0 35.2	29.2 40.8 65.6	43.1 59.5 92.6	56.6 77.4 117	69.8 94.5 140	101 134 191	131 171 236	159 205 276	186 237 313	212 267 348	237 296 380	284 350 440	328 400 495	370 446 546
	3 3 3	6 8 10	21.5 37.8 57.5	42.7 74.1 110	63.6 109 159	84.2 143 205	104 175 249	154 253 349	202 326 439	248 394 522	293 459 599	337 521 672	380 580 740	463 692 868	542 797 985	617 895 1094
ш	3 4 4 4	12 8 10 12 16 12	79.3 38.3 59.3 84.0	148 76.0 117 163	208 113 172 238	264 150 226 310	315 186 279 378	430 274 405 537	530 359 524 684	621 441 637 820	705 522 745 948	783 600 848 1069	856 676 947 1184	991 822 1136 1400	1114 963 1313 1599	1228 1097 1480 1785
NOMINAL PIPE SIZE	4 6 6 6	16 20	141 86.1 151 230	262 171 296 441	370 254 436 637	469 337 571 821	560 418 702 996	764 616 1012 1396	943 807 1302 1757	1105 993 1576 2089	1254 1174 1836 2398	1392 1349 2083 2688	1522 1520 2321 2962	1762 1851 2768 3472	1980 2166 3186 3940	2183 2469 3579 4377
NIMON	6 8 8 8	16 20 24	317 153 237 336	590 304 467 653	833 452 689 953	1055 599 906 1238	1260 743 1116 1512	1718 1095 1620 2150	2121 1435 2096 2736	2486 1766 2548 3282	2820 2086 2979 3794	3132 2399 3392 4278	3424 2703 3790 4738	3964 3290 4544 5599	4456 3851 5251 6395	4911 4390 5920 7140
	8 10 10 10	20 24 30	505 239 342 525	950 475 675 1020	1354 707 999 1488	1726 935 1314 1935	2072 1161 1623 2362	2854 1710 2363 3359	3548 2243 3067 4276	4178 2759 3738 5128	4760 3260 4381 5928	5302 3748 4999 6684	5813 4223 5594 7403	6756 5141 6728 8748	7619 6017 7795 9993	8419 6859 8807 11157
	10 12 12 12 12 12	42 24 36 42 48	955 344 756 1005 1268	1759 684 1468 1914 2360	2467 1018 2143 2751 3333	3107 1347 2786 3530 4220	3695 1671 3401 4262 5039	5003 2463 4837 5931 6873	6146 3229 6157 7428 8486	7176 3972 7384 8796 9943	8119 4695 8536 10064 11282	8996 5397 9625 11252 12528	9817 6082 10660 12372 13697	11331 7402 12597 14450 15855	12710 8665 14390 16355 17824	13984 9877 16066 18125 19646

Note: Contact factory for flow on other sizes.

HOW TO ORDER

For easy ordering, select proper model numbers

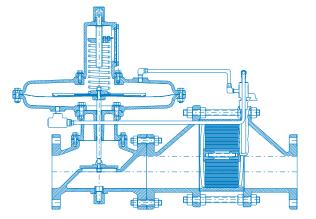
- Sizes 2" through 12"
- Unit designed for quick and easy maintenance
- Single port regulator for tight shut-off
- Aluminum (type 356), carbon steel and stainless steel.
- Factory Mutual approved flame arrester

GROTH REGULATOR

The regulator part of the assembly is a back pressure regulator to maintain upstream pressure over a range of 2" W.C. to 24" W.C. It provides a tight shut-off and maintains pressure at approximately 20% over the predetermined set pressure. This assembly is usually placed just upstream from a flare or burner.

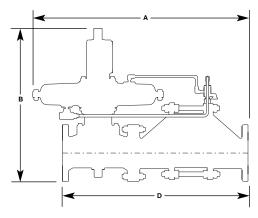
GROTH FLAME ARRESTER

Model 7628 flame arrester is attached to Model 8860 Back Pressure Regulator with the thermal shut-off control valve. See Model 7628 information in this catalog.


SPECIAL FEATURES

This unit accomplishes two purposes. It will maintain a predetermined back pressure in order that only surplus gas is flared and inhibits a possible flame flashback of the flare into the combustible fuel control system. A fusible element that is rated at 260°F precludes valve shut-off unless contacted by flame. The visual indicator provides operator with easy adjustments. The proven spiral wound, crimped ribbon, flame element was reported by NTIS of the Dept. of Commerce to provide the best flame quenching performance for the least pressure drop. The unit is corrosion resistant throughout and quick and easy to open and maintain. Standard operating range is 2" to 12" of water and special springs are available when higher pressures are required.

MODEL 8400A

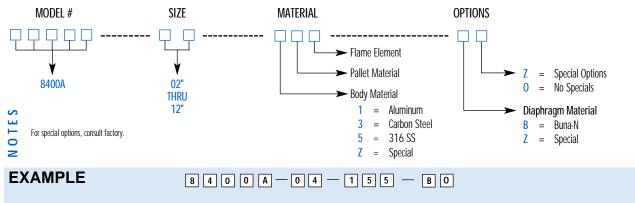

Model 8400A

GROTH, THE CAPABILITY COMPANY

As with all Groth products, every Model 8400A is factory inspected and tested to meet your critical requirements and special needs. Groth is ISO 9001 Certified to insure reliable quality.

SPECIFICATIONS

Specifications subject to change without notice. Certified dimensions available upon request.


Model No.	Size*	A Length (Metric)	B Height (Metric)	C Width (Metric)	D Face to Face (Metric)	Approx. Ship. Wt. Lbs. (Aluminum)
8400A	2″	28.69″	25″	20.50″	22.81″	80
	(50.8 mm)	(729)	(635)	(521)	(579)	(36 KG)
8400A	3″	31.31″	26″	20.50"	26.06″	100
	(76.2 mm)	(795)	(660)	(521)	(662)	(45 KG)
8400A	4″	34.25″	27″	20.50"	29.69″	150
	(101.6 mm)	(870)	(686)	(521)	(754)	(68 KG)
8400A	6″	41.81″	32.25″	26.50″	36.06″	200
	(152.4 mm)	(1062)	(819)	(673)	(916)	(91 KG)
8400A	8″	50.06″	33.50″	26.50″	47.94″	300
	(203.2 mm)	(1272)	(851)	(673)	(1218)	(136 KG)
8400A	10″	55.63″	48.50″	25.50″	55.63″	645
	(254 mm)	(1413)	(1232)	(648)	(1413)	(293 KG)
8400A	12″	67.38″	50.75″	25.50″	67.38″	795
	(305 mm)	(1711)	(1289)	(648)	(1711)	(362 KG)

* 150# A.N.S.I. compatibility.

F.F. on aluminum and R.F. on carbon steel and stainless steel alloys.

HOW TO ORDER

For easy ordering, select proper model numbers

Indicates a 4" Model 8400A with aluminum body, 316SS pallet and flame element, Buna-N diaphragm.

FLAME TRAP ASSEMBLY

Model 8400A

Pressure	Air Flow Capacity 1000 Standard Cubic Feet per Hour at 60° F									
	2″	3″	4″	anuaru cubic r 6"			10//			
In WC		-	-	-	-	10″	12″			
0.25	0.62	1.40	2.48	5.58	9.92	15.5	22.3			
0.50	0.99	2.24	3.97	8.94	15.9	24.8	35.8			
0.75	1.29	2.90	5.15	11.6	20.6	32.2	46.4			
1.00	1.54	3.46	6.15	13.8	24.6	38.5	55.4			
1.50	1.96	4.42	7.85	17.7	31.4	49.1	70.7			
2.00	2.32	5.23	9.29	20.9	37.2	58.1	83.6			
3.00	2.93	6.59	11.7	26.4	46.9	73.2	105			
4.00	3.44	7.75	13.8	31.0	55.1	86.1	124			
5.00	3.90	8.76	15.6	35.1	62.3	97.4	140			
6.00	4.30	9.69	17.2	38.7	68.9	108	155			
8.0	5.03	11.3	20.1	45.3	80.5	126	181			
10.0	5.67	12.8	22.7	51.1	90.8	142	204			
12.0	6.26	14.1	25.0	56.3	100	156	225			
14.0	6.79	15.3	27.2	61.1	109	170	244			
16.0	7.29	16.4	29.1	65.6	117	182	262			
18.0	7.75	17.4	31.0	69.8	124	194	279			
20.0	8.20	18.4	32.8	73.8	131	205	295			
25.0	9.21	20.7	36.9	82.9	147	230	332			
30.0	10.1	22.8	40.5	91.2	162	253	365			

Pressure	Flow Capacity of 0.7 SG Digester Gas 1000 Standard Cubic Feet per Hour at 60° F									
In WC	2″	3″	4″	6″	8″	10″	12″			
0.25	0.74	1.67	2.97	6.67	11.9	18.5	26.7			
0.50	1.19	2.67	4.75	10.7	19.0	29.7	42.7			
0.75	1.54	3.46	6.16	13.9	24.6	38.5	55.4			
1.00	1.84	4.14	7.36	16.6	29.4	46.0	66.2			
1.50	2.35	5.28	9.39	21.1	37.5	58.7	84.5			
2.00	2.78	6.25	11.1	25.0	44.4	69.4	100			
3.00	3.50	7.88	14.0	31.5	56.0	87.5	126			
4.00	4.11	9.26	16.5	37.0	65.8	103	148			
5.00	4.66	10.5	18.6	41.9	74.5	116	168			
6.00	5.15	11.6	20.6	46.3	82.3	129	185			
8.0	6.02	13.5	24.1	54.1	96.2	150	217			
10.0	6.78	15.3	27.1	61.0	109	170	244			
12.0	7.48	16.8	29.9	67.3	120	187	269			
14.0	8.12	18.3	32.5	73.0	130	203	292			
16.0	8.71	19.6	34.8	78.4	139	218	314			
18.0	9.27	20.9	37.1	83.4	148	232	334			
20.0	9.80	22.0	39.2	88.2	157	245	353			
25.0	11.0	24.8	44.0	99.1	176	275	396			
30.0	12.1	27.2	48.4	109	194	303	436			

Model 8400A

Pressure		Air Flow Capacity Normal Cubic Meters per Hour at 0° C										
mm WC	2″	3″	4″	6″	. 8″	10″	12″					
5	15.2	34.2	60.9	137	243	380	548					
10	24.7	55.6	98.8	222	395	617	889					
15	32.2	72.5	129	290	516	806	1160					
20	38.7	87.0	155	348	619	967	1392					
40	58.8	132	235	530	941	1471	2118					
60	74.5	168	298	670	1192	1862	2681					
80	87.7	197	351	789	1403	2193	3157					
100	99.4	224	398	894	1590	2485	3578					
150	124	280	497	1119	1989	3107	4475					
200	145	327	581	1308	2325	3633	5232					
250	164	369	656	1475	2622	4097	5900					
300	181	406	723	1626	2890	4516	6504					
350	196	441	784	1765	3137	4902	7059					
400	210	474	842	1894	3367	5261	7576					
450	224	504	896	2016	3583	5599	8062					
500	237	533	947	2131	3788	5918	8522					
600	260	586	1042	2344	4168	6512	9377					
700	282	635	1129	2541	4517	7058	10164					
800	303	681	1211	2724	4843	7567	10896					

Pressure				apacity of O. nal Cubic Meter			
mm WC	2″	3″	4″		8″	10″	12″
5	18.2	40.9	72.8	164	291	455	655
10	29.5	66.4	118	266	472	738	1063
15	38.5	86.7	154	347	616	963	1387
20	46.2	104	185	416	739	1155	1663
40	70.3	158	281	633	1125	1758	2532
60	89.0	200	356	801	1424	2225	3204
80	105	236	419	943	1677	2621	3774
100	119	267	475	1069	1901	2970	4276
150	149	334	594	1337	2377	3714	5348
200	174	391	695	1563	2779	4342	6253
250	196	441	783	1763	3134	4897	7051
300	216	486	864	1943	3455	5398	7773
350	234	527	937	2109	3750	585 9	8437
400	252	566	1006	2264	4025	6289	9056
450	268	602	1071	2409	4283	6692	9636
500	283	637	1132	2546	4527	7074	10186
600	311	701	1245	2802	4981	7783	11208
700	337	759	1350	3037	5399	8436	12148
800	362	814	1447	3256	5788	9044	13023

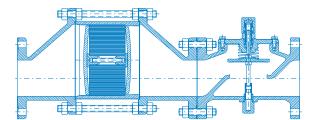
FLAME TRAP ASSEMBLY Model 8500A

- Sizes 2" through 12"
- Aluminum (type 356), carbon steel and stainless steel.
- Designed for quick and easy maintenance
- Factory Mutual approved flame arrester

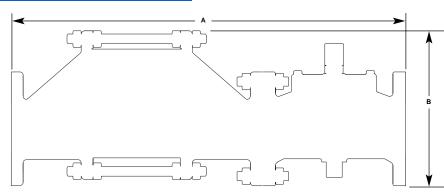
FLAME TRAP ASSEMBLY

This unit includes a Groth Model 7628 horizontal flame arrester and a Groth Model 8530 thermal operated shut-off valve. This unit is generally installed in combustible vapor lines. They are also installed in a line to gas utilization equipment, as close as possible to the source of combustion.

SPECIAL FEATURES


The unit may be installed in horizontal or vertical lines. The valve includes a fusible element which melts at 260°F and provides shut-down within 15 seconds. A pyrex sight glass is used to provide a view of the indicator rod showing valve position. Easy maintenance features are provided which enable the quick removal and cleaning of the Groth wafer type flame bank assembly. Additionally, the fusible element is replaceable without disassembly of valve.

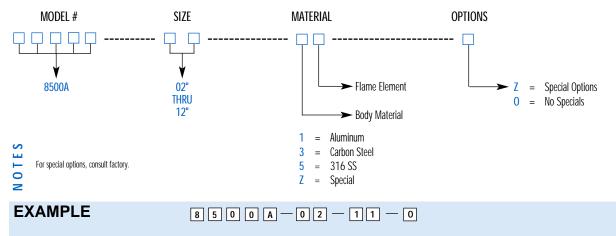
GROTH, THE CAPABILITY COMPANY


As with all Groth products, every Model 8500A is factory inspected and tested to meet your critical requirements and special needs. Groth is ISO 9001 Certified to insure reliable quality.

MODEL 8500A

SPECIFICATIONS

Specifications subject to change without notice. Certified dimensions available upon request.


Model No.	Size*	A Length (Metric)	B Height (Metric)	Approx. Ship Wt. Lbs. (Aluminum)
8500A	2″	22.81″	9.50″	50
	(50.8 mm)	(579)	(241)	(23 KG)
8500A	3″	26.06″	11.00″	75
	(76.2 mm)	(662)	(279)	(34 KG)
8500A	4″	29.69″	12.50″	100
	(101.6 mm)	(754)	(318)	(45 KG)
8500A	6″	36.06″	16.50″	150
	(152.4 mm)	(916)	(419)	(68 KG)
8500A	8″	47.94″	20.50"	200
	(203.2 mm)	(1218)	(521)	(91 KG)
8500A	10″	55.63″	24.50″	565
	(254 mm)	(1413)	(622)	(257 KG)
8500A	12″	67.38″	28.50″	715
	(305 mm)	(1711)	(724)	(325 KG)

* 150# A.N.S.I. compatibility.

F.F. on aluminum and R.F. on carbon steel and stainless steel alloys.

HOW TO ORDER

For easy ordering, select proper model numbers

Indicates a 2" Model 8500A with aluminum body, pallet and flame element and no specials.

Model 8500A

Pressure	Air Flow Capacity 1000 Standard Cubic Feet per Hour at 60° F										
In WC	2″	3″	4″	6″	8″	10″	12″				
0.25	0.62	1.40	2.48	5.58	9.92	15.5	22.3				
0.50	0.99	2.24	3.97	8.94	15.9	24.8	35.8				
0.75	1.29	2.90	5.15	11.6	20.6	32.2	46.4				
1.00	1.54	3.46	6.15	13.8	24.6	38.5	55.4				
1.50	1.96	4.42	7.85	17.7	31.4	49.1	70.7				
2.00	2.32	5.23	9.29	20.9	37.2	58.1	83.6				
3.00	2.93	6.59	11.7	26.4	46.9	73.2	105				
4.00	3.44	7.75	13.8	31.0	55.1	86.1	124				
5.00	3.90	8.76	15.6	35.1	62.3	97.4	140				
6.00	4.30	9.69	17.2	38.7	68.9	108	155				
8.0	5.03	11.3	20.1	45.3	80.5	126	181				
10.0	5.67	12.8	22.7	51.1	90.8	142	204				
12.0	6.26	14.1	25.0	56.3	100	156	225				
14.0	6.79	15.3	27.2	61.1	109	170	244				
16.0	7.29	16.4	29.1	65.6	117	182	262				
18.0	7.75	17.4	31.0	69.8	124	194	279				
20.0	8.20	18.4	32.8	73.8	131	205	295				
25.0	9.21	20.7	36.9	82.9	147	230	332				
30.0	10.1	22.8	40.5	91.2	162	253	365				

Pressure	Flow Capacity of 0.7 SG Digester Gas 1000 Standard Cubic Feet per Hour at 60° F										
In WC	2″	3″	4″	6″	8″	10″	12″				
0.25	0.74	1.67	2.97	6.67	11.9	18.5	26.7				
0.50	1.19	2.67	4.75	10.7	19.0	29.7	42.7				
0.75	1.54	3.46	6.16	13.9	24.6	38.5	55.4				
1.00	1.84	4.14	7.36	16.6	29.4	46.0	66.2				
1.50	2.35	5.28	9.39	21.1	37.5	58.7	84.5				
2.00	2.78	6.25	11.1	25.0	44.4	69.4	100				
3.00	3.50	7.88	14.0	31.5	56.0	87.5	126				
4.00	4.11	9.26	16.5	37.0	65.8	103	148				
5.00	4.66	10.5	18.6	41.9	74.5	116	168				
6.00	5.15	11.6	20.6	46.3	82.3	129	185				
8.0	6.02	13.5	24.1	54.1	96.2	150	217				
10.0	6.78	15.3	27.1	61.0	109	170	244				
12.0	7.48	16.8	29.9	67.3	120	187	269				
14.0	8.12	18.3	32.5	73.0	130	203	292				
16.0	8.71	19.6	34.8	78.4	139	218	314				
18.0	9.27	20.9	37.1	83.4	148	232	334				
20.0	9.80	22.0	39.2	88.2	157	245	353				
25.0	11.0	24.8	44.0	99.1	176	275	396				
30.0	12.1	27.2	48.4	109	194	303	436				

Model 8500A

Pressure	Air Flow Capacity Normal Cubic Meters per Hour at 0° C							
mm WC	2″	3″	4″	6″	8″	10″	12″	
5	15.2	34.2	60.9	137	243	380	548	
10	24.7	55.6	98.8	222	39 5	617	889	
15	32.2	72.5	129	290	516	806	1160	
20	38.7	87.0	155	348	619	967	1392	
40	58.8	132	235	530	941	1471	2118	
60	74.5	168	298	670	1192	1862	2681	
80	87.7	197	351	789	1403	2193	3157	
100	99.4	224	398	894	1590	2485	3578	
150	124	280	497	1119	1989	3107	4475	
200	145	327	581	1308	2325	3633	5232	
250	164	369	656	1475	2622	4097	5900	
300	181	406	723	1626	2890	4516	6504	
350	196	441	784	1765	3137	4902	7059	
400	210	474	842	1894	3367	5261	7576	
450	224	504	896	2016	3583	5599	8062	
500	237	533	947	2131	3788	5918	8522	
600	260	586	1042	2344	4168	6512	9377	
700	282	635	1129	2541	4517	7058	10164	
800	303	681	1211	2724	4843	7567	10896	

Pressure	Flow Capacity of 0.7 SG Digester Gas Normal Cubic Meters per Hour at 0° C							
mm WC	2″	3″	4″	6″	8″	10″	12″	
5	18.2	40.9	72.8	164	291	455	655	
10	29.5	66.4	118	266	472	738	1063	
15	38.5	86.7	154	347	616	963	1387	
20	46.2	104	185	416	739	1155	1663	
40	70.3	158	281	633	1125	1758	2532	
60	89.0	200	356	801	1424	2225	3204	
80	105	236	419	943	1677	2621	3774	
100	119	267	475	1069	1901	2970	4276	
150	149	334	594	1337	2377	3714	5348	
200	174	391	695	1563	2779	4342	6253	
250	196	441	783	1763	3134	4897	7051	
300	216	486	864	1943	3455	5398	7773	
350	234	527	937	2109	3750	5859	8437	
400	252	566	1006	2264	4025	6289	9056	
450	268	602	1071	2409	4283	6692	9636	
500	283	637	1132	2546	4527	7074	10186	
600	311	701	1245	2802	4981	7783	11208	
700	337	759	1350	3037	5399	8436	12148	
800	362	814	1447	3256	5788	9044	13023	

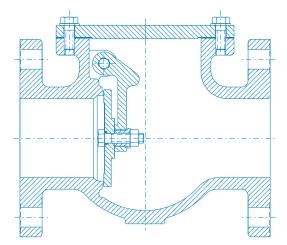
BACK PRESSURE CHECK VALVE Model 8110

- Sizes 2" through 12"
- Full Flow with low pressure drop
- Standard aluminum (type 356), carbon steel and stainless steel construction

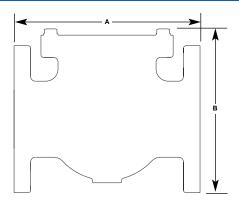
BACK PRESSURE CHECK VALVE

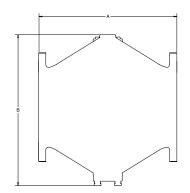
Model 8110 is used specifically in low pressure gas control lines where minimum pressure drops and maximum flow capacity are required.

SPECIAL FEATURES


Model 8110 valves are built of corrosion resistant trim. Furnished standard in aluminum with free swinging aluminum pendulum type pallet. By removing the cover, easy access is provided for quick inspection and maintenance. Model 8110 check valves should be installed in your low pressure line downstream of meters, regulators and other gas control devices that may be otherwise damaged by an accidental reversal of the pressure in the system due to pressure waves from a flashback or similar disturbance.

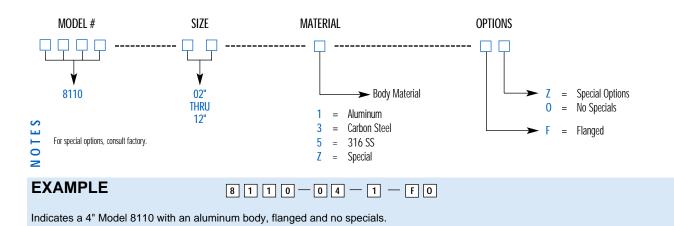
GROTH, THE CAPABILITY COMPANY


As with all Groth products, every Model 8110 is factory inspected and tested to meet your critical requirements and special needs. Groth is ISO 9001 Certified to insure reliable quality.



MODEL 8110

SPECIFICATIONS


	Specifications subject to change without notice. Certified dimensions available upon re-								
Model No.	Size*	Length Flange A (Metric)	Height Flange B (max) (Metric)	Approx. Shipping Lbs. (Aluminum) Flanged					
8110	2" (50.8 mm)	8 ″ (203)	8.12″ (206)	9 (4 KG)					
8110	3"	9.50″	10.50″	15					
8110	(76.2 mm) 4 "	(241) 11.50″	(267) 11.50″	(7 KG) 28					
8110	(101.6 mm)	(292) 14″	(292) 13.50″	(13 KG) 50					
	6'' (152.4 mm)	(356)	(343)	50 (23 KG)					
8110	8 " (203.2 mm)	19.50″ (495)	16.50″ (419)	90 (41 KG)					
8110	10"	22"	24.75"	140					
8110	(254 mm) 12"	(559) 24.25	(629) 28.62	(64) 210					
	(305 mm)	(616)	(727)	(95)					

* 150# A.N.S.I. compatibility.

F.F. on aluminum and R.F. on carbon steel and stainless steel alloys.

HOW TO ORDER

For easy ordering, select proper model numbers

Model 8110

Pressure	Air Flow Capacity 1000 Standard Cubic Feet per Hour at 60° F							
In WC	2″	3″	4″	6″	8″	10″	12″	
0.25	1.11	2.50	4.44	10.0	17.8	27.8	40.0	
0.50	2.22	5.00	8.89	20.0	35.6	55.6	80.0	
0.75	3.33	7.50	13.3	30.0	53.3	83.3	120	
1.00	4.44	10.0	17.8	40.0	71.1	111	160	
1.50	6.67	15.0	26.7	60.0	107	167	240	
2.00	7.70	17.3	30.8	69.3	123	192	277	
3.00	9.43	21.2	37.7	84.9	151	236	339	
4.00	10.9	24.5	43.5	98.0	174	272	392	
5.00	12.2	27.4	48.7	110	195	304	438	
6.00	13.3	30.0	53.3	120	213	333	480	
8.0	15.4	34.6	61.6	139	246	385	554	
10.0	17.2	38.7	68.9	155	275	430	620	
12.0	18.9	42.4	75.4	170	302	471	679	
14.0	20.4	45.8	81.5	183	326	509	733	
16.0	21.8	49.0	87.1	196	348	544	784	
18.0	23.1	52.0	92.4	208	370	577	831	
20.0	24.3	54.8	97.4	219	389	609	876	
25.0	27.2	61.2	109	245	435	680	980	
30.0	29.8	67.1	119	268	477	745	1073	

Pressure	Flow Capacity of 0.7 SG Digester Gas 1000 Standard Cubic Feet per Hour at 60° F							
In WC	2″	3″	4″	6″	8″	10″	12″	
0.25	1.33	2.99	5.31	12.0	21.2	33.2	47.8	
0.50	2.66	5.98	10.6	23.9	42.5	66.4	95.6	
0.75	3.98	8.96	15.9	35.9	63.7	100	143	
1.00	5.31	12.0	21.2	47.8	85.0	133	191	
1.50	7.97	17.9	31.9	71.7	127	199	287	
2.00	9.20	20.7	36.8	82.8	147	230	331	
3.00	11.3	25.4	45.1	101	180	282	406	
4.00	13.0	29.3	52.0	117	208	325	468	
5.00	14.5	32.7	58.2	131	233	364	524	
6.00	15.9	35.9	63.7	143	255	398	574	
8.0	18.4	41.4	73.6	166	294	460	662	
10.0	20.6	46.3	82.3	185	329	514	741	
12.0	22.5	50.7	90.1	203	361	563	811	
14.0	24.3	54.8	97.4	219	389	609	876	
16.0	26.0	58.6	104	234	416	651	937	
18.0	27.6	62.1	110	248	442	690	994	
20.0	29.1	65.5	116	262	466	727	1047	
25.0	32.5	73.2	130	293	520	813	1171	
30.0	35.6	80.2	143	321	570	891	1283	

Model 8110

Pressure	Air Flow Capacity Normal Cubic Meters per Hour at 0° C							
mm WC	2″	3″	4″	6″	8″	10″	12″	
5	24.8	55.8	99.1	223	397	620	892	
10	49.6	112	198	446	793	1239	1784	
15	74.4	167	297	669	1190	1859	2677	
20	99.1	223	397	892	1586	2478	3569	
40	194	435	774	1742	3096	4838	6966	
60	237	533	948	2133	3792	5925	8532	
80	274	616	1095	2463	4379	6842	9852	
100	306	688	1224	2754	7895	7649	11015	
150	375	843	1499	3373	5996	9368	13490	
200	433	974	1731	3894	6923	10817	15577	
250	484	1088	1935	4354	7740	12094	17416	
300	530	1192	2120	4770	8479	13249	19078	
350	572	1288	2290	5152	9159	14310	20607	
400	612	1377	2448	5507	9791	15298	22029	
450	649	1460	2596	5841	10385	16226	23366	
500	684	1539	2737	6157	10947	17104	24630	
600	749	1686	2998	6745	11991	18736	26980	
700	810	1821	3238	7286	12952	20238	29142	
800	865	1947	3462	7789	13846	21635	31154	

Pressure	Flow Capacity of 0.7 SG Digester Gas								
		Normal Cubic Meters per Hour at 0° C							
mm WC	2″	3″	4″	6″	8″	10″	12″		
5	30.4	68.5	122	274	487	761	1095		
10	60.8	137	243	548	974	1521	2190		
15	91.3	205	365	821	1460	2282	3286		
20	122	274	487	1095	1947	3042	4381		
40	238	534	950	2138	3801	5938	8551		
60	291	655	1164	2618	4655	7273	10473		
80	336	756	1344	3023	5375	8398	12093		
100	376	845	1502	3380	6009	9389	13521		
150	460	1035	1840	4140	7360	11500	16560		
200	531	1195	2125	4780	8498	13279	19121		
250	594	1336	2375	5345	9501	14846	21378		
300	651	1464	2602	5855	10408	16263	23419		
350	703	1581	2811	6324	11242	17566	25295		
400	751	1690	3005	6760	12019	18779	27042		
450	797	1793	3187	7171	12748	19918	28682		
500	840	1890	3359	7558	13437	20995	30233		
600	920	2070	3680	8280	14720	22999	33119		
700	994	2236	3975	8943	15899	24842	35773		
800	1062	2390	4249	9561	16997	26557	38243		

SECTION 3

PRESSURE / VACUUM RELIEF VALVES

- 1260A Pressure Relief Valves w/Pipe-Away Feature
 - 2300A Pressure Relief Valves •
 - 1300A Vacuum Relief Valves •
 - 1360A Vacuum Relief Valves
 - 5000, 5100 Free Vents •
 - 6000, 6100 Gauge Hatch
 - 6200 Gauge Hatch •

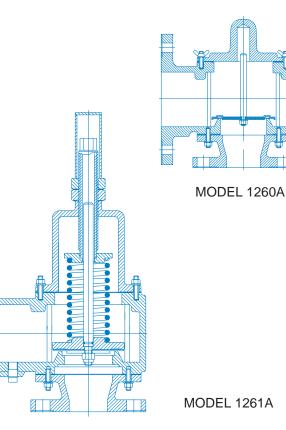
PRESSURE RELIEF VALVE Model 1260A

- Sizes 2" through 12"
- Pressure settings 0.5 oz/in² to 15 PSIG
- Available in aluminum (type 356), carbon steel, stainless steel, fiberglass, and other materials
- Modular construction

PRESSURE RELIEF VALVE

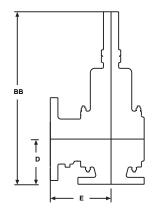
Pressure Relief Valve Model 1260A is for use where pressure relief is required and all relieving vapors must be piped away. Tank relief, to avoid tank damage, is controlled by a spring or weight loaded pallet in the valve housing. Pressure relief valves help provide increased fire protection and safety. The Model 1260A can also be used for inline vacuum relief where flanged inlet connection is required. Back pressure in the system must be considered when using flow curves.

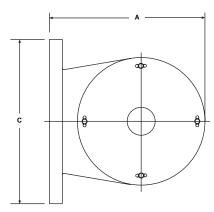
SPECIAL FEATURES

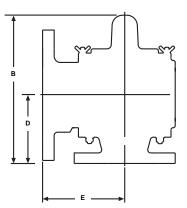

Model 1260A offers Groth's special "cushioned air" seating. Superior performing Teflon®¹ seating diaphragms are standard to minimize sticking caused by resinous vapors and atmospheric moisture. The Model 1260A has a self-draining housing body and drip rings to protect seating surfaces from condensate and freezing. This design also avoids pressure or vacuum buildup due to binding or clogging of the valve. Buna-N, Viton® and other seating diaphragms can be provided when required.

GROTH, THE CAPABILITY COMPANY

As with all Groth products, every Model 1260A is factory inspected and tested to meet your critical requirements and special needs. Inventory is maintained to insure rapid delivery.

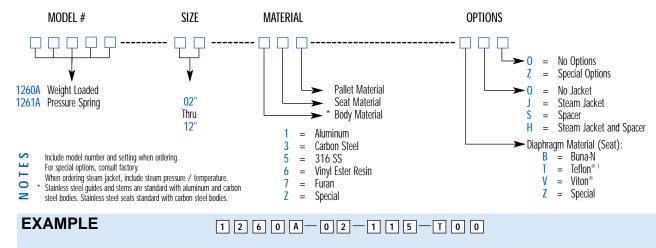



MODEL 1260A



¹ Teflon is a registered trademark of DuPont Corporation.

SPECIFICATIONS


Specifications subject to change without notice. Certified dimensions available upon request.

Inlet Flg.	Outlet Flg.	Max. Set Pressure Weight Loaded	Max. Set Pressure Spring Loaded	Min. Setting Weight Loaded	A Length (mm)	B Height (mm)	C Width (mm)	D (mm)	E (mm)	BB (mm)	Approx. Ship. Wt. Lbs. (Aluminum)
2″	3″	11 oz/in ²			8 5/8 ″	9 ^{3/8} ″	7 1/2 "	4 ^{1/8} ″	5 ^{1/2} ″	16 ^{5/8} ″	16
(50 mm)	(80 mm)	(48.3 gm/cm²)			(219)	(238)	(191)	(105)	(140)	(422)	(7 kg)
3″ (80 mm)	4" (100 mm)	13 oz/in ² (57.1 gm/cm ²)	SURE	0	10" (254)	11 ^{1/8} ″ (282)	9″ (229)	5″ (127)	6 " (152)	20 ^{1/4} " (514)	22 (10 kg)
4″ (100 mm)	6 " (150 mm)	16 oz/in ² (70.3 gm/cm²)	NDED PRESS	HT LOADEI	11″ (279)	13 ^{7/8} ″ (352)	11 <i>"</i> (279)	6 ^{1/2} " (165)	6 ^{1/2} " (165)	25 ^{5/8} ″ (651)	29 (13 kg)
6" (150 mm)	8″ (200 mm)	16 oz/in ² (70.3 gm/cm²)	SPRING LOADED PRESSURE (1.05 kg. /cm ³)	oz/in² WEIGHT LOADED (2.20 gm. /cm²)	14 ^{1/2} ″ (368)	17 ^{3/8} ″ (441)	13 ^{1/2} " (343)	8 ^{1/2} " (216)	8 ^{1/2} " (216)	34 ^{1/2} ″ (876)	55 (25 kg)
8″ (200 mm)	10" (250 mm)	16 oz/in ² (70.3 gm/cm²)	15 PSIG 5	*0.5 (18″ (457)	21 ^{1/4} " (539)	16″ (406)	9 ^{3/4} " (248)	10 ^{3/4} " (273)	39 3/4 " (1010)	92 (42 kg)
10" (250 mm)	12" (300 mm)	16 oz/in ² (70.3 gm/cm²)			20 ^{3/4} ″ (527)	23 ^{5/8} ″ (600)	19 " (483)	10 ^{1/4} ″ (260)	12 ^{1/2} " (318)	46 ^{3/8} ″ (1178)	105 (48 kg)
12" (300 mm)	14" (350 mm)	16 oz/in² (70.3 gm/cm²)			24 ^{3/4} " (629)	26 ^{5/8} ″ (676)	21" (533)	11″ (279)	15" (381)	49 ^{1/4} " (1251)	149 (68 kg)

¹ On spring loaded valves, change model number. 150# R.F. drilling compatibility F.F. on aluminum and R.F. on carbon steel and stainless steel alloys. Fiberglass dimensions on request. 16 oz/in² set with spacer. S.S. set weights-Consult Factory. *Some sizes require non-ferrous components to achieve 0.5 oz/ sq. in. setting.

HOW TO ORDER

For easy ordering, select proper model numbers

Indicates a 2" Model 1260A with Aluminum Body and Seat, 316 SS Pallet, Teflon®1 Seat Diaphragm and no other options.

1 Teflon is a registered trademark of DuPont Corporation.

Model 1260A Pressure Relief Capacity

	ressure P _s)	Air F	low Capacit	ty at 100% 00 Standard				essure)
In WC	Oz/Sq In	2″	3″	4″	6″	8″	10″	12″
0.87	0.50	6.87	13.3	25.2	52.7	82.6	135	175
1.00	0.58	7.39	14.3	27.1	56.6	88.8	145	188
1.73	1.00	9.71	18.8	35.6	74.3	117	190	247
2.00	1.16	10.4	20.2	38.2	79.8	125	205	265
2.60	1.50	11.9	23.0	43.5	90.8	143	233	302
3.00	1.73	12.8	24.7	46.8	97.5	153	250	324
3.46	2.00	13.7	26.6	50.2	105	164	268	348
4.00	2.31	14.7	28.6	53.9	112	177	288	374
6.00	3.47	18.0	35.0	65.9	137	215	351	456
8.00	4.62	20.7	40.4	75.8	157	248	404	525
10.0	5.78	23.1	45.1	84.6	175	276	450	584
12.0	6.93	25.2	49.4	92.4	191	301	491	638
15.0	8.66	28.1	55.2	103	211	335	546	709
20.0	11.6	32.2	63.7	118	241	383	625	811
25.0	14.4	35.8	71.2	131	267	424	692	898
30.0	17.3	39.0	77.9	143	289	460	751	975

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_{f} = Flowing pressure$ $P_{s} = Set pressure$ $\% OP = [(P_{f} - P_{s})/P_{s}] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculati	on
6" Model 1260A	

4 In WC set pressure [P_s]

7 In WC flowing pressure [P_f]

 Read flow capacity at set pressure from table
 Calculate over-pressure

- 3. Read "C" factor from table
- 4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for 75% Over-pressure at intersection of row 70 and col	umn 5
"C" factor at 75% OP = 0.87	

	"C" Factor Table											
% O P	7	8	9									
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50		
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58		
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65		
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72		
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78		
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84		
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89		
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94		
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00		

Flow = 112,000 SCFH % OP = [(7 - 4)/4] x 100 = 75%

"C" = 0.87

Flow = 0.87 x 112,000 = 97,440 SCFH

Model 1260A Pressure Relief Capacity

	essure ?)	Air F	Air Flow Capacity at 100% Over-pressure (Double Set Pressure) 1000 Normal Cubic Meters per Hour at 0° C									
mm WC	mb	2″	2″ 3″		6″	8″	10″	12″				
22	2.16	0.19	0.37	0.71	1.48	2.33	3.80	4.93				
50	4.90	0.29	0.56	1.07	2.23	3.50	5.72	7.42				
75	7.35	0.36	0.69	1.31	2.72	4.28	6.99	9.10				
100	9.80	0.41	0.80	1.51	3.14	4.93	8.05	10.4				
125	12.3	0.46	0.89	1.68	3.50	5.51	8.99	11.7				
150	14.7	0.50	0.98	1.84	3.82	6.02	9.80	12.7				
175	17.2	0.54	1.06	1.99	4.12	6.49	10.6	13.7				
200	19.6	0.58	1.13	2.12	4.39	6.92	11.3	14.7				
225	22.1	0.61	1.20	2.25	4.65	7.33	12.0	15.5				
250	24.5	0.65	1.26	2.36	4.89	7.71	12.6	16.3				
275	27.0	0.68	1.32	2.48	5.11	8.07	13.2	17.1				
300	29.4	0.70	1.38	2.58	5.33	8.42	13.7	17.8				
375	36.8	0.78	1.54	2.88	5.91	9.40	15.3	19.8				
500 49.0		0.90	1.78	3.30	6.75	10.7	17.5	22.7				
625	61.3	1.00	1.99	3.67	7.46	11.9	19.4	25.1				
750	73.5	1.09	2.18	3.99	8.07	12.9	21.0	27.3				

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OP} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}}) / \mathsf{P}_{\mathsf{s}} \right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at set pressure from table 6" Model 1260A 2. Calculate over-pressure 100 mm WC Set Pressure [Ps] 3. Read "C" factor from table 175 mm WC Flowing Pressure [Pf] 4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for 75% Over-pressure at intersection of row 70 and column 5 "C" factor at 75% OP = 0.87

"C" Factor Table										
%0P	0	1	2	3	4	5	6	7	8	9
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00

Flow = 3,140 NCMH % OP = [(175 - 100)/100] x 100 = 75%

"C" = 0.87

Flow = $0.87 \times 3,140 = 2,732$ NCMH

Model 1261A Pressure Relief Capacity

Set Pressure (P _s)	Air F	low Capacit	y at 100% 00 Standard				essure)
PSIG	2″	3″	4″	6″		10″	12″
1.00	28.0	53.4	92.5	210	345	529	739
2.00	40.3	77.4	134	304	500	767	1070
3.00	50.2	96.9	168	381	625	960	1340
4.00	58.8	114	198	448	736	1130	1577
5.00	66.5	130	225	510	838	1286	1794
6.00	73.7	144	250	568	932	1431	1997
7.00	80.4	158	274	622	1022	1568	2188
8.00	86.7	171	297	674	1107	1699	2371
9.00	92.8	184	319	724	1189	1825	2546
10.0	98.6	196	340	772	1267	1945	2714
11.0	104	208	360	818	1343	2062	2877
12.0	110	219	380	863	1417	2176	3036
13.0	115	231	400	907	1489	2286	3189
14.0	120	241	418	949	1559	2393	3339
15.0	125	252	437	991	1627	2498	3486

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f =$ Flowing pressure $P_s =$ Set pressure $% OP = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation	1
6" Model 1261A	2
4 PSIG set pressure [P _s]	3
7 PSIG flowing pressure [P _f]	4

1. Read flow capacity at set pressure from table

2. Calculate over-pressure

- 3. Read "C" factor from table
 - 4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for **75%** Over-pressure at intersection of row **70** and column **5** "C" factor at 75% OP = 0.83

	"C" Factor Table												
%0P	0 1 2 3 4 5 6 7 8 9												
10		•••Consult Factory•••											
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40			
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52			
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62			
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71			
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79			
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86			
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93			
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00			

Flow = 448,000 SCFH % OP = $[(7 - 4)/4] \times 100 = 75\%$

"C" = 0.83

Flow = 0.83 x 448,000 = 371,840 SCFH

Model 1261A Pressure Relief Capacity

Set Pressure (P _s)	Air F	Air Flow Capacity at 100% Over-pressure (Double Set Pressure) 1000 Normal Cubic Meters per Hour at 0° C								
BarG	2″	3″	4″	6″	8″	10″	12″			
0.07	0.82	1.57	2.72	6.16	10.1	15.5	21.7			
0.10	0.99	1.89	3.28	7.45	12.2	18.8	26.2			
0.15	1.23	2.36	4.09	9.28	15.2	23.4	32.6			
0.20	1.43	2.76	4.80	10.9	17.9	27.4	38.3			
0.25	1.62	3.14	5.44	12.3	20.3	31.1	43.4			
0.30	1.79	3.48	6.04	13.7	22.5	34.5	48.2			
0.35	1.95	3.81	6.61	15.0	24.6	37.8	52.7			
0.40	2.10	4.12	7.14	16.2	26.6	40.9	57.0			
0.45	2.25	4.41	7.66	17.4	28.5	43.8	61.1			
0.50	2.39	4.70	8.16	18.5	30.4	46.6	65.1			
0.55	2.52	4.98	8.64	19.6	32.2	49.4	68.9			
0.60	2.65	5.25	9.10	20.6	33.9	52.1	72.6			
0.70	2.89	5.76	10.0	22.7	37.2	57.2	79.7			
0.80	3.13	6.25	10.8	24.6	40.4	62.1	86.5			
0.90	3.35	6.72	11.7	26.5	43.5	66.7	93.1			
1.00	3.56	7.18	12.5	28.3	46.4	71.2	99.4			

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Example—To find "C" factor from table:

Read "C" factor for 75% Over-pressure at intersection of row 70 and column 5 "C" factor at 75% OP = 0.83

"C" Fostor Tabl

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OP} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}}) / \mathsf{P}_{\mathsf{s}} \right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at set pressure from table 6" Model 1261A 2. Calculate over-pressure 0.4 BarG Set Pressure [Ps] 3. Read "C" factor from table 0.7 BarG Flowing Pressure [Pf] 4. Calculate flow capacity

			-	'U" Fa	actor	ladie				
%0P	0	1	2	3	4	5	6	7	8	9
10 •••Consult Factory•••										
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00

Flow = 16,200 NCMH

% OP= [(0.7 - 0.4)/0.4] x 100 = 75% "C" = 0.83

Flow = 0.83 x 16,200 = 13,446 NCMH

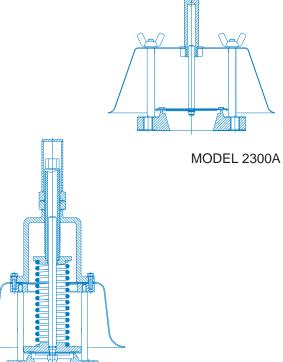
PRESSURE RELIEF VALVE Model 2300A

- Sizes 2" through 12"
- Pressure settings 0.5 oz/in² to 15 PSIG
- Available in aluminum (type 356), carbon steel, stainless steel and other materials.

EMERGENCY RELIEF VALVE

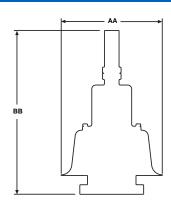
Model 2300A is designed for emergency relief capacity above that supplied by a standard operating valve used on tanks, piping, and low pressure vessels. Emergency relief valves provide relief from excessive internal pressures which may cause tank damage.

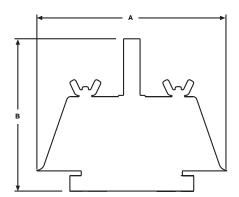
SPECIAL FEATURES


Model 2300A is built of corrosion resistant material throughout. Groth's self-closing special teflon "cushioned air" pallet with center stabilizing stem and peripheral guiding provides uniform seating and alignment. Superior performing Teflon®¹ seating diaphragms are standard to minimize sticking caused by resinous vapors and atmospheric moisture. The guides support a spun weatherhood which covers and protects the entire valve structure. As added protection against the entry of foreign matter, a mesh screen encircles the valve under the weatherhood.

GROTH, THE CAPABILITY COMPANY

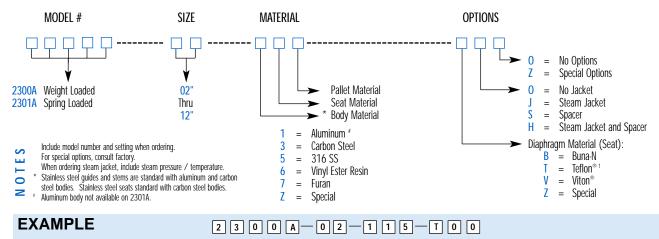
As with all Groth products, every Model 2300A is factory inspected and tested to meet your critical requirements and special needs. Inventory is maintained to insure rapid delivery.




MODEL 2300A

MODEL 2301A

SPECIFICATIONS



	Specifications subject to change without notice. Certified dimensions available upon reque								
Size*⁺ Flange	Maximum Set Pressure	Minimum Set Pressure	A Diameter (mm)	AA Diameter (mm)	B Height (mm)	BB Height (mm)	Approx. Ship Wt. Lbs. (Aluminum)		
2" (50 mm) 3" (80 mm) 4" (100 mm) 6" (150 mm) 8" (200 mm) 10" (250 mm) 12" (300 mm)	16 oz/in ² WEIGHT LOADED (70.3 gm /am) 15 PSIG SPRING LOADED (1.05 kg, /am)	**0.5.oz/jip² (2.2.gm/cm?) WEIGHT LOADED	9 1/2 " (241) 11 1/2 " (292) 13" (330) 19" (482) 23 5/8 " (600) 30 3/4 " (781) 36" (914)	9 1/2 " (241) 13" (330) 13" (330) 19 1/2 " (495) 23 1/2 " (495) 23 1/2 " (597) 25 1/2 " (648) 25 1/2 "	6 5/8 " (168) 8 5/8 " (219) 10 9/16 " (268) 15" (381) 16 5/8 " (422) 17" (431) 18" (457)	16 1/2 " (419) 18 5/8 " (467) 22 1/2 " (572) 30 1/2 " (784) 35 3/8 " (899) 41 3/8 " (1051) 42 3/8 " (1076)	12 (5 kg) 15 (7 kg) 20 (9 kg) 30 (14 kg) 45 (20 kg) 65 (30 kg) 100 (45 kg		

[†] On spring-loaded valves, change to model 2301A. [†] Larger sizes available - consult factory. ^{*} 150# A.N.S.I. drilling compatibility, F.F. on aluminum and R.F. on carbon steel and stainless steel alloys. Fiberglass dimensions on request. ^{**}Some sizes require non-ferrous components to achieve 0.5 oz/ sq. in. setting.

HOW TO ORDER

For easy ordering, select proper model numbers

Indicates a 2" Model 2300A with Aluminum Body and Seat, 316 SS Pallet, Teflon®1 Seat Diaphragm and no other options.

¹ Teflon is a registered trademark of DuPont Corporation.

Model 2300A Pressure Relief Capacity

	essure	Air Flow Capacity at 100% Over-pressure (Double Set Pre 1000 Standard Cubic Feet per Hour at 60° F						essure)
In WC	Öz/Sq In	2″	3″	4″	6″	8″	10″	12″
0.87	0.50	6.98	15.4	26.1	58.5	88.4	143	211
1.00	0.58	7.50	16.5	28.0	62.8	95.0	154	227
1.73	1.00	9.85	21.7	36.8	82.5	125	203	298
2.00	1.16	10.6	23.3	39.6	88.6	134	218	320
2.60	1.50	12.1	26.6	45.1	101	153	248	365
3.00	1.73	12.9	28.6	48.4	108	164	266	392
3.46	2.00	13.9	30.7	52.0	116	176	285	420
4.00	2.31	14.9	33.0	55.8	125	189	307	451
6.00	3.47	18.2	40.4	68.2	152	230	374	550
8.00	4.62	21.0	46.6	78.5	175	265	430	633
10.0	5.78	23.4	52.1	87.6	194	295	479	705
12.0	6.93	25.6	57.1	95.7	212	322	523	769
15.0	8.66	28.5	63.8	107	235	358	581	855
20.0	11.6	32.7	73.6	122	268	409	665	979
25.0	14.4	36.3	82.2	136	296	454	736	1084
30.0	17.3	39.5	89.9	148	321	492	799	1177

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f = Flowing pressure$ $P_s = Set pressure$ $% OP = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation	
6" Model 2300A	

set pressure from table 2. Calculate over-pressure 3. Read "C" factor from table

1. Read flow capacity at

- 4 In WC set pressure $[P_s]$
- 7 In WC flowing pressure $[P_f]$ 4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for 75% Over-pressure at intersection of row 70 and co	olumn 5
"C" factor at 75% OP = 0.87	

	"C" Factor Table										
%0P	0	1	2	3	4	5	6	7	8	9	
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50	
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58	
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65	
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72	
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78	
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84	
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89	
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94	
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00	

Flow = 125,000 SCFH % OP = $[(7 - 4)/4] \times 100 = 75\%$

"C" = 0.87

Flow = 0.87 x 125,000 = 108,750 SCFH

Model 2300A Pressure Relief Capacity

	essure ?)	Air Flow Capacity at 100% Over-pressure (Double Set Pressure) 1000 Normal Cubic Meters per Hour at 0° C						
mm WC	mb	2″	3″	4″	6″	. 8″	10″	12″
22	2.16	0.20	0.43	0.73	1.65	2.49	4.04	5.95
50	4.90	0.30	0.65	1.11	2.48	3.75	6.08	8.95
75	7.35	0.36	0.80	1.35	3.03	4.58	7.43	10.9
100	9.80	0.42	0.92	1.56	3.49	5.28	8.57	12.6
125	12.3	0.47	1.03	1.74	3.89	5.89	9.56	14.1
150	14.7	0.51	1.13	1.91	4.25	6.44	10.5	15.4
175	17.2	0.55	1.22	2.06	4.58	6.94	11.3	16.6
200	19.6	0.59	1.30	2.19	4.88	7.40	12.0	17.7
225	22.1	0.62	1.38	2.32	5.16	7.84	127	18.7
250	24.5	0.65	1.46	2.45	5.43	8.25	13.4	19.7
275	27.0	0.69	1.53	2.56	5.68	8.63	14.0	20.6
300	29.4	0.72	1.59	2.67	5.92	9.00	14.6	21.5
375	36.8	0.80	1.78	2.98	6.57	10.0	16.2	23.9
500	49.0	0.91	2.06	3.42	7.49	11.4	18.6	27.4
625	61.3	1.02	2.30	3.80	8.28	12.7	20.6	30.3
750	73.5	1.11	2.51	4.13	8.97	13.8	22.4	32.9

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OP} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}}) / \mathsf{P}_{\mathsf{s}} \right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at set pressure from table 6" Model 2300A 2. Calculate over-pressure 100 mm WC Set Pressure [Ps] 3. Read "C" factor from table 175 mm WC Flowing Pressure [Pf] 4. Calculate flow capacity

Example—To find "C" factor from table:

```
Read "C" factor for 75\% Over-pressure at intersection of row 70 and column 5 "C" factor at 75% OP = 0.87
```

	"C" Factor Table										
%0P	0	1	2	3	4	5	6	7	8	9	
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50	
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58	
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65	
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72	
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78	
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84	
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89	
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94	
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00	

Flow = 3,490 NCMH % OP = [(175 - 100)/100] x 100 = 75%

"C" = 0.87

Flow = $0.87 \times ,490 = 3,036$ NCMH

Model 2301A Pressure Relief Capacity

Set Pressure (P _s)	Air Flow Capacity at 100% Over-pressure (Double Set Pressure) 1000 Standard Cubic Feet per Hour at 60° F							
PSIG	2″	3″	4″	6″	8″	10″	12″	
1.00	27.1	59.9	104	198	345	529	739	
2.00	39.7	87.7	152	296	500	767	1070	
3.00	50.1	111	192	379	625	960	1340	
4.00	59.5	131	228	456	736	1130	1577	
5.00	68.3	151	261	530	838	1286	1794	
6.00	76.5	169	293	601	932	1431	1997	
7.00	84.3	186	323	670	1022	1568	2188	
8.00	91.9	203	352	737	1107	1699	2371	
9.00	99.3	219	380	804	1189	1825	2546	
10.0	107	235	407	869	1267	1945	2714	
11.0	113	250	434	934	1343	2062	2877	
12.0	120	265	460	998	1417	2175	3036	
13.0	127	280	485	1061	1489	2286	3189	
14.0	134	295	510	1124	1559	2393	3339	
15.0	140	309	535	1186	1627	2498	3486	

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f = Flowing pressure$ $P_s = Set pressure$ $\% OP = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation						
6" Model 2301A	2					
4 PSIG set pressure [Ps]	3					
7 PSIG flowing pressure $[P_f]$	4					

Example—To find "C" factor from table: Read "C" factor for 75% Over-pressure at intersection of row 70 and column 5 "C" factor at 75% OP = 0.83

	"C" Factor Table									
%0P	0	1	2	3	4	5	6	7	8	9
10	•••Consult Factory•••									
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00

Flow = 456,000 SCFH

 $\% \text{ OP} = [(7 - 4)/4] \times 100 = 75\%$

"C" = 0.83

Read flow capacity at set pressure from table

Calculate over-pressure

Calculate flow capacity

Read "C" factor from table

Flow = 0.83 x 456,000 = 378,480 SCFH

Model 2301A Pressure Relief Capacity

Set Pressure (P _s)	Air Flow Capacity at 100% Over-pressure (Double Set Pressure) 1000 Normal Cubic Meters per Hour at 0° C							
BarG	2″	3″	4″	6″	8″	10″	12″	
0.07	0.80	1.76	3.05	5.83	10.1	15.5	21.7	
0.10	0.97	2.13	3.70	7.13	12.2	18.8	26.2	
0.15	1.21	2.67	4.64	9.05	15.2	23.4	32.7	
0.20	1.43	3.16	5.48	10.8	17.9	27.4	38.3	
0.25	1.63	3.60	6.25	12.5	20.3	31.1	43.4	
0.30	1.82	4.02	6.98	14.0	22.5	34.5	48.2	
0.35	2.00	4.42	7.68	15.6	24.6	37.8	52.7	
0.40	2.18	4.81	8.34	17.1	26.6	40.8	57.0	
0.45	2.35	5.18	8.99	18.6	28.5	43.8	61.1	
0.50	2.51	5.54	9.62	20.0	30.4	46.6	65.1	
0.55	2.67	5.89	10.2	21.4	32.2	49.4	68.9	
0.60	2.83	6.24	10.8	22.8	33.9	52.0	72.7	
0.70	3.13	6.90	12.0	25.6	37.3	57.1	79.8	
0.80	3.42	7.55	13.1	28.3	40.4	62.0	86.6	
0.90	3.70	8.17	14.2	31.0	43.5	66.7	93.2	
1.00	3.98	8.78	15.2	33.6	46.4	71.2	99.4	

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Example—To find "C" factor from table:

Read "C" factor for 75% Over-pressure at intersection of row 70 and column 5 "C" factor at 75% OP = 0.83

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OP} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}}) / \mathsf{P}_{\mathsf{s}} \right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation	1.	Read flow capacity at
		set pressure from table
6" Model 2301A	2.	Calculate over-pressure
0.4 BarG Set Pressure [P _s]	3.	Read "C" factor from table
0.7 BarG Flowing Pressure $[P_f]$	4.	Calculate flow capacity

	"C" Factor Table											
%0P	0	1	2	3	4	5	6	7	8	9		
10	•••Consult Factory•••											
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40		
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52		
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62		
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71		
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79		
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86		
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93		
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00		

Flow = 17,100 NCMH

% OP = [(0.7 - 0.4)/0.4] x 100 = 75% "C" = 0.83

Flow = 0.83 x 17,100 = 14,193 NCMH

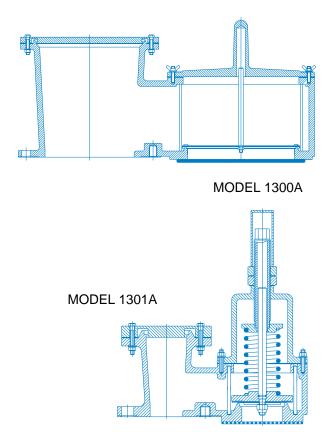
VACUUM RELIEF VALVE Model 1300A

- Sizes 2" through 12"
- Vacuum settings 0.5 oz/in² to 12 PSIG
- Available in aluminum (type 356), carbon steel, stainless steel and other materials.
- Modular construction

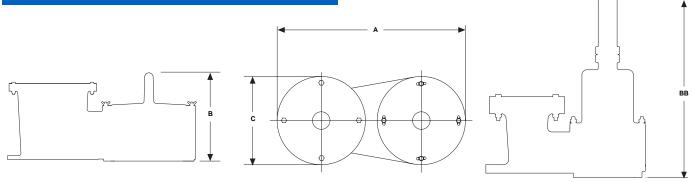
VACUUM RELIEF VALVE

Model 1300A is used when vacuum relief is the only requirement. Intake relief necessary under working conditions is achieved by a spring or weight loaded pallet. This feature of the Model 1300A reduces the possibility of tank damage. The Model 1300A helps to provide increased fire protection and safety. Valve size must be selected to perform required vacuum relief under operating and thermal conditions. Flow curves for vacuum relief are provided.

SPECIAL FEATURES


Model 1300A offers Groth's special "cushioned air" seating. Superior performing Teflon^{®1} seating diaphragms are standard to minimize sticking caused by resinous vapors and atmospheric moisture. The Model 1300A has a self draining housing body and drip rings to protect seating surfaces from condensate and freezing. This design also avoids vacuum buildup due to binding or clogging of the vent. Metal-to-metal, Buna-N, Viton[®] and other seating diaphragms can be provided when required.

GROTH, THE CAPABILITY COMPANY


As with all Groth products, every Model 1300A is factory inspected and tested to meet your critical requirements and special needs. Inventory is maintained to insure rapid delivery.

MODEL 1300A

SPECIFICATIONS


Specifications subject to change without notice. Certified dimensions available upon request.

Size	Max. Set Vacuum Weight Loaded	Max. Set Vacuum Spring Loaded	Min. Set Vacuum Weight Loaded	Max. W.P.† for Min. Vac. Setting	Min. Vac. Setting vs. Max. W.P.†	A Length (mm)	B Height (mm)	BB Height (mm)	C Width (mm)	Approx. Ship. Wt. Lbs. (Aluminum)
2″	12 oz/in ²					115/8″	67/8″	14″	6″	15
(50 mm)	(52.7 gm/cm ²)					(295)	(174)	(356)	(152)	(7 kg)
3″	11 oz/in ²			See TP Vacuum	D2 for Settings	153/4″	73/4″	16 1/4″	73/4″	21
(80 mm)	(48.3 gm/cm ²)			and N	5	(400)	(196)	(413)	(197)	(10 kg)
4″	11 oz/in ²	DED	°O.5 oz/in² WEIGHT LOADED (2.20 gm. /cm²)			17 1/4″	9 5/8″	19 7/8″	9″	32
(100 mm)	(48.3 gm/cm ²)	12 PSIG SPRING LOADED (0.84 kg. /cm²)	HT LO			(438)	(244)	(505)	(229)	(14 kg)
6″	16 oz/in ²	SPRIN 4 kg. /	WEIG gm. /			231/2"	117/8″	27″	12″	61
(150 mm)	(70.3 gm/cm²)	SIG 3	z/in² (2.20			(597)	(301)	(686)	(305)	(28 kg)
8″	16 oz/in²	12 P	0.5 0			28 1/2″	151/2"	317/8″	14 1/2″	81
(200 mm)	(70.3 gm/cm²)		*			(724)	(393)	(810)	(368)	(37 kg)
10″	16 oz/in²					331/4″	185/8″	377/8″	16 1/2″	121
(250 mm)	(70.3 gm/cm²)					(845)	(473)	(962)	(419)	(55 kg)
12″	16 oz/in²					371/4″	215/8"	42″	19″	165
(300 mm)	(70.3 gm/cm²)					(946)	(549)	(1067)	(483)	(75 kg)

⁺ W.P. = Working Pressure. ⁺ On spring loaded valves, change model number. 150# A.N.S.I. drilling compatibility, F.F. on aluminum and R.F. on carbon steel and stainless steel alloys. Fiberglass dimensions on request. 16 oz/in² set with space. S.S. set weights-Consult Factory. *Some sizes require non-ferrous components to achieve 0.5 oz./sq. in. setting.

HOW TO ORDER

For easy ordering, select proper model numbers

Indicates a 2" Model 1300A with Aluminum Body and Seat, 316 SS Pallet, Teflon®1 Seat Diaphragm and no other options.

¹ Teflon is a registered trademark of DuPont Corporation

Model 1300A Vacuum Relief Capacity

	acuum PJ)	Air	Flow Capac	ity at 100 ^o 00 Standard				cuum)
In WC	✓ Oz∕Sq In	2″	3″	4″	6″	8″	10″	12″
0.87	0.50	4.70	10.3	16.0	34.7	60.5	91.1	129
1.00	0.58	5.05	11.0	17.2	37.3	65.0	97.9	138
1.73	1.00	6.63	14.5	22.6	49.0	85.3	129	182
2.00	1.16	7.12	15.6	24.2	52.6	91.6	138	195
2.60	1.50	8.10	17.7	27.6	59.8	104	157	222
3.00	1.73	8.70	19.0	29.6	64.2	112	169	238
3.46	2.00	9.33	20.4	31.8	68.9	120	181	256
4.00	2.31	10.0	21.9	34.1	74.0	129	194	274
6.00	3.47	12.2	26.7	41.5	90.1	157	237	334
8.00	4.62	14.0	30.6	47.7	103	180	272	384
10.0	5.78	15.6	34.0	53.0	115	200	302	427
12.0	6.93	17.0	37.1	57.8	125	218	329	465
15.0	8.66	18.8	41.1	64.0	139	242	365	516
20.0	11.6	21.4	46.8	72.9	158	276	415	587
25.0	14.4	23.6	51.5	80.3	174	304	457	646
30.0	17.3	25.4	55.6	86.6	188	327	493	697

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f =$ Flowing pressure $P_s =$ Set pressure $% OV = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation	
6" Model 1300A	
4 In WC set vacuum [Ps]	

7 In WC flowing vacuum [Pf]

 Read flow capacity at set vacuum from table
 Calculate over-vacuum
 Read "C" factor from table

4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for **75%** Over-vacuum at intersection of row **70** and column **5** "C" factor at 75% OV = 0.87

			1.	'C" Fa	actor	Table				
%0V	0	1	2	3	4	5	6	7	8	9
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00

Flow = 74,000 SCFH % OV = [(7 - 4)/4] x 100 = 75% "C" = 0.87

Flow = 0.87 x 74,000 = 64,380 SCFH

Model 1300A Vacuum Relief Capacity

	acuum ?_)	Air	Air Flow Capacity at 100% Over-vacuum (Double Set Vacuum) 1000 Normal Cubic Meters per Hour at 0° C									
mm WC	mb	2″	3″	4″	6″	8″	10″	12″				
22	2.16	0.13	0.29	0.45	0.98	1.71	2.58	3.65				
50	4.90	0.20	0.44	0.68	1.48	2.58	3.88	5.48				
75	7.35	0.24	0.53	0.83	1.81	3.15	4.74	6.70				
100	9.80	0.28	0.62	0.96	2.08	3.62	5.46	7.72				
125	12.3	0.31	0.69	1.07	2.32	4.04	6.09	8.60				
150	14.7	0.34	0.75	1.17	2.53	4.41	6.65	9.40				
175	17.2	0.37	0.81	1.26	2.73	4.75	7.16	10.1				
200	19.6	0.39	0.86	1.34	2.91	5.07	7.64	10.8				
225	22.1	0.42	0.91	1.42	3.08	5.36	8.08	11.4				
250	24.5	0.44	0.96	1.49	3.23	5.64	8.49	12.0				
275	27.0	0.46	1.00	1.56	3.38	5.90	8.88	12.6				
300	29.4	0.48	1.04	1.62	3.52	6.14	9.25	13.1				
375	36.8	0.53	1.16	1.80	3.91	6.81	10.3	14.5				
500	49.0	0.60	1.32	2.05	4.45	7.75	11.7	16.5				
625	61.3	0.66	1.45	2.26	4.90	8.54	12.9	18.2				
750	73.5	0.72	1.57	2.44	5.29	9.22	13.9	19.6				

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_{f} = Flowing pressure$ $P_{s} = Set pressure$ $\% OV = [(P_{f} - P_{s})/P_{s}] \times 100$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at set vacuum from table 6" Model 1300A 2. Calculate over-vacuum 100 mm WC Set Vacuum [P_s] 3. Read "C" factor from table 175 mm WC Flowing Vacuum [P_f] 4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for **75%** Over-vacuum at intersection of row **70** and column **5** "C" factor at 75% OV = **0.87**

	"C" Factor Table												
%0V	0	1	2	3	4	5	6	7	8	9			
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50			
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58			
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65			
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72			
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78			
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84			
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89			
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94			
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00			

Flow = 2,080 NCMH % OV = [(175 - 100)/100] x 100 = 75%

"C" = 0.87

Flow = $0.87 \times 2,080 = 1,810$ NCMH

Model 1301A Vacuum Relief Capacity

Set Vacuum	Air	Flow Capac					cuum)
(P _s)		10	JU Standard	Cubic Feet p	er Hour at 6	0° F	
PSIG	2″	3″	4″	6″	8″	10″	12″
1.00	13.8	30.5	52.9	120	197	302	422
1.10	14.5	31.9	55.4	126	206	316	442
1.20	15.1	33.2	57.7	131	215	330	460
1.30	15.7	34.5	59.9	136	223	342	478
1.40	16.2	35.7	62.0	141	231	355	495
1.50	16.8	36.9	64.0	145	239	366	511
1.75	18.0	39.6	68.7	156	256	393	548
2.00	19.1	42.0	73.0	166	272	417	582
2.25	20.1	44.3	76.9	174	286	439	613
2.50	21.0	46.3	80.4	183	300	460	641
2.75	21.9	48.2	83.7	190	312	478	667
3.00	22.7	49.9	86.6	197	323	495	691
3.25	23.4	51.4	89.3	203	333	511	713
3.50	24.0	52.8	91.8	208	342	525	732
>3.50		CONSU	LT FACTORY FO	r vacuum set	TINGS GREATE	R THAN 3.5 PS	SI

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f =$ Flowing pressure $P_s =$ Set pressure % OV = [($P_f - P_s$)/ P_s] x 100

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation	1.	Rea
		set
6" Model 1301A	2.	Cal
2 PSIG set vacuum [P _s]	3.	Rea
3.5 PSIG flowing vacuum [P _f]	4.	Cal

Read flow capacity at set vacuum from table Calculate over-vacuum

- Read "C" factor from table
- 4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for **75%** Over-vacuum at intersection of row **70** and column **5** "C" factor at 75% OV = 0.83

	"C" Factor Table											
%0V	0	1	2	3	4	5	6	7	8	9		
10		•••Consult Factory•••										
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40		
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52		
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62		
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71		
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79		
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86		
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93		
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00		

Flow = 166,000 SCFH

% OV = [(3.50 - 2.0)/2.0] x 100 = 75%

"C" = 0.83

Flow = 0.83 x 166,000 = 137,780 SCFH

Model 1301A Vacuum Relief Capacity

Set Vacuum (P _s)	Air	Flow Capac 10	ity at 100 ^o 00 Normal C				cuum)
BarG	2″	3″	4″	6″	8″	10″	12″
0.07	0.41	0.90	1.55	3.52	5.77	8.87	12.4
0.10	0.48	1.06	1.83	4.16	6.83	10.5	14.6
0.11	0.51	1.11	1.92	4.35	7.14	11.0	15.3
0.12	0.53	1.15	1.99	4.53	7.43	11.4	15.9
0.13	0.55	1.20	2.07	4.69	7.70	11.8	16.5
0.14	0.56	1.24	2.14	4.85	7.96	12.2	17.1
0.15	0.58	1.27	2.20	5.00	8.21	12.6	17.6
0.16	0.60	1.31	2.27	5.14	8.44	13.0	18.1
0.17	0.61	1.35	2.33	5.28	8.66	13.3	18.6
0.18	0.63	1.38	2.38	5.41	8.88	13.6	19.0
0.19	0.64	1.41	2.44	5.53	9.08	13.9	19.4
0.20	0.66	1.44	2.49	5.65	9.27	14.2	19.8
0.22	0.68	1.49	2.58	5.86	9.62	14.8	20.6
0.24	0.70	1.54	2.67	6.05	9.93	15.2	21.3
>0.24		CONSU	lt factory fo	r vacuum set	TINGS GREATE	R THAN 0.24 I	BARG

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \ pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \ pressure} \\ \% \ \mathsf{OV} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}})/\mathsf{P}_{\mathsf{s}}\right] \times 100 \end{array}$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at set vacuum from table 6" Model 1301A 2. Calculate over-vacuum 0.12 BarG Set Vacuum [Ps] 3. Read "C" factor from table 0.17 BarG Flowing Vacuum [Pf] 4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for 42% Over-vacuum at intersection of row 40 and column 2 "C" factor at 42% OV = 0.55

	"C" Factor Table											
%0V	0	1	2	3	4	5	6	7	8	9		
10		•••Consult Factory•••										
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40		
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52		
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62		
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71		
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79		
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86		
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93		
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00		

Flow = 4,530 NCMH % OV = $[(0.17 - 0.12) / (0.12) \times 10^{-1}]$

% OV = [(0.17 - 0.12)/0.12] x 100 = 42% "C" = 0.55

Flow = $0.55 \times 4,530 = 2,492$ NCMH

VACUUM RELIEF VALVE Model 1360A

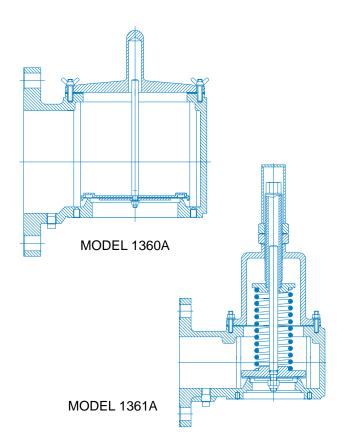
- Sizes 3" through 14"
- Vacuum settings 0.5 oz/in² to 12 PSIG
- Available in aluminum (type 356), carbon steel, stainless steel, fiberglass and other materials

VACUUM RELIEF VALVE

Model 1360A is used when vacuum relief is the only requirement. The Model 1360A may be side mounted on the tank body or piped in. Intake relief necessary under working conditions is achieved by a spring or weight loaded pallet in the valve housing. The Model 1360A reduces the possibility of tank damage and provides increased fire protection and safety.

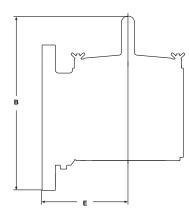
Valve size must be selected to meet required vacuum relief under operating and thermal conditions. Flow curves for vacuum relief are provided.

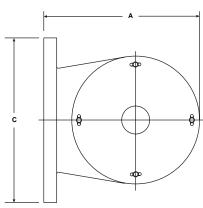
SPECIAL FEATURES

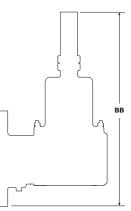

Model 1360A offers Groth's special "cushioned air" seating. Superior performing Teflon^{®1} seating diaphragms are standard to minimize sticking caused by resinous vapors and atmospheric moisture. The Model 1360A has a self draining housing body and drip rings to protect seating surfaces from condensate and freezing. This design also avoids vacuum buildup due to binding or clogging of the vent. Metal-to metal, Buna-N, Viton[®] and other seating diaphragms can be provided when required.

GROTH, THE CAPABILITY COMPANY

As with all Groth products, every Model 1360A is factory inspected and tested to meet your critical requirements and special needs. Inventory is maintained to insure rapid delivery.

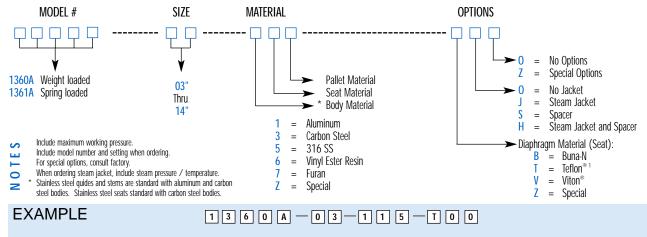



MODEL 1360A



¹ Teflon is a registered trademark of DuPont Corporation.

SPECIFICATIONS



					Sp	ecifications sub	ject to change	without notice. C	Certified dimens	ions available	upon request.
Size Flange	Max. Set Vacuum Weight Loaded	Max. Set Vacuum Spring Loaded	Min. Set Vacuum Weight Loaded	Max. W.P. [†] for Min. Vac. Setting	Min. Vac. Setting vs. Max. W.P. [†]	A Length (mm)	B Height (mm)	C Width (mm)	E (mm)	BB Height (mm)	Approx. Ship. Wt. Lbs. (Aluminum)
3″	11 oz/in ²					8 5/8 ″	9 1/4 ″	7 1/2 ″	5 ^{1/2} ″	16 ^{1/4} ″	12
(80 mm)	(48.2 gm/cm²)					(219)	(235)	(191)	(140)	(413)	(6 kg)
4″	13 oz/in ²			See TP	D2 for	10″	11 1/2 "	9″	6″	19 ^{3/4} ″	17
(100 mm)	(57.0 gm/cm²)	Ę			Settings	(254)	(292)	(229)	(152)	(502)	(8 kg)
6″	16 oz/in²	VACUI	ADED	and I	NAWP	11″	141″	11″	6 ^{1/2} ″	24 ^{5/8} ″	23
(150 mm)	(70.3 gm/cm²)		HT LO			(279)	(362)	(279)	(165)	(626)	(10 kg)
8″	16 oz/in²	SPRING LOADED VACUUM (0.84 kg. /cm ³)	*0.5 oz/in² WEIGHT LOADED (2.20 gm. /cm²)			14 ^{1/2} "	17 3/4 ″	13 1/2 "	8 1/2 ″	32 3/4 "	42
(200 mm)	(70.3 gm/cm²)	SPRIN (0.84	z/in² (2.20			(368)	(451)	(343)	(216)	(832)	(19 kg)
10″	16 oz/in²	12 PSIG	0.5 0			18″	21 1/4 "	16″	10 ^{3/4} ″	38″	71
(250 mm)	(70.3 gm/cm²)	12	ŕ			(457)	(539)	(406)	(273)	(965)	(32 kg)
12″	16 oz/in²					20 3/4 "	25 ^{3/4} "	19″	12 1/2 "	45 ^{3/8} ″	83
(300 mm)	(70.3 gm/cm²)					(527)	(654)	(483)	(318)	(1153)	(38 kg)
14″	16 oz/in²					24 ^{3/4} "	29 1/4 "	21″	15″	48 3/4 "	118
(350 mm)	(70.3 gm/cm²)					(629)	(742)	(533)	(381)	(1238)	(54 kg)

¹ W.P. = Working Pressure. ¹ On spring loaded valves, change model number. 150# R.F. drilling compatibility F.F. on aluminum and R.F. on carbon steel and stainless steel alloys. Fiberglass dimensions on request. 16 oz/in² set with spacer. S.S. set weights-Consult Factory. *Some sizes require non-ferrous components to achieve 0.5 oz./sq. in. setting.

HOW TO ORDER

For easy ordering, select proper model numbers

Indicates a 3" Model 1360A with Aluminum Body and Seat, 316 SS Pallet, Teflon®1 Seat Diaphragm , and no other options.

¹ Teflon is a registered trademark of DuPont Corporation.

Model 1360A Vacuum Relief Capacity

	acuum P _s)	Air Flow Capacity at 100% Over-vacuum (Double Set Vacuum) 1000 Standard Cubic Feet per Hour at 60° F								
In WC	oz/Sq In	3″	4″	6″	8″	10"	12″	14″		
0.87	0.50	8.01	14.8	27.8	57.4	99.4	136	182		
1.00	0.58	8.61	15.9	29.9	61.6	107	146	195		
1.73	1.00	11.3	20.8	39.3	80.9	140	192	257		
2.00	1.16	12.1	22.4	42.2	86.9	151	207	276		
2.60	1.50	13.8	25.5	48.0	98.9	171	235	314		
3.00	1.73	14.8	27.3	51.5	106	184	252	337		
3.46	2.00	15.9	29.3	55.3	114	197	271	361		
4.00	2.31	17.1	31.5	59.3	122	212	291	388		
6.00	3.47	20.8	38.4	72.3	149	258	354	472		
8.00	4.62	23.9	44.0	83.0	171	297	407	542		
10.0	5.78	26.6	49.0	92.3	190	330	452	603		
12.0	6.93	28.9	53.4	101	207	359	492	657		
15.0	8.66	32.1	59.1	111	230	398	546	728		
20.0	11.6	36.5	67.3	127	261	453	621	829		
25.0	14.4	40.2	74.1	140	288	499	684	913		
30.0	17.3	43.4	80.0	151	311	538	738	985		

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $\begin{array}{l} \mathsf{P}_{\mathsf{f}} = \mathsf{Flowing \, pressure} \\ \mathsf{P}_{\mathsf{s}} = \mathsf{Set \, pressure} \\ \% \, \mathsf{OV} = \left[(\mathsf{P}_{\mathsf{f}} - \mathsf{P}_{\mathsf{s}})/\mathsf{P}_{\mathsf{s}}\right] \, \textbf{x} \, \, 100 \end{array}$

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation	
6" Model 1360A	
4 In WC set vacuum [Ps]	

7 In WC flowing vacuum [Pf]

 Read flow capacity at set vacuum from table
 Calculate over-vacuum
 Read "C" factor from table

4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for **75%** Over-vacuum at intersection of row **70** and column **5** "C" factor at 75% OV = 0.87

	"C" Factor Table									
%0V	0	1	2	3	4	5	6	7	8	9
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00

Flow = 59,300 SCFH % OV = [(7 - 4)/4] x 100 = 75% "C" = 0.87

Flow = 0.87 x 59,300 = 1,591 SCFH

Model 1360A Vacuum Relief Capacity

	acuum ?_)	Air	Air Flow Capacity at 100% Over-vacuum (Double Set Vacuum) 1000 Normal Cubic Meters per Hour at 0° C								
mm WC	mb	3″	4″	6″	8″	10″	12″	14″			
22	2.16	0.23	0.42	0.78	1.62	2.80	3.84	5.12			
50	4.90	0.34	0.63	1.18	2.43	4.21	5.77	7.70			
75	7.35	0.41	0.76	1.44	2.97	5.14	7.05	9.41			
100	9.80	0.48	0.88	1.66	3.42	5.92	8.12	10.8			
125	12.3	0.53	0.98	1.85	3.81	6.61	9.06	12.1			
150	14.7	0.58	1.07	2.02	4.16	7.22	9.89	13.2			
175	17.2	0.63	1.16	2.18	4.49	7.78	10.7	14.2			
200	19.6	0.67	1.23	2.32	4.78	8.29	11.4	15.2			
225	22.1	0.71	1.30	2.45	5.06	8.77	12.0	16.0			
250	24.5	0.74	1.37	2.58	5.32	9.22	12.6	16.9			
275	27.0	0.78	1.43	2.70	5.56	9.64	13.2	17.6			
300	29.4	0.81	1.49	2.81	5.79	10.0	13.8	18.4			
375	36.8	0.90	1.65	3.12	6.42	11.1	15.3	20.4			
500	49.0	1.02	1.88	3.55	7.31	12.7	17.4	23.2			
625	61.3	1.13	2.08	3.91	8.06	14.0	19.1	25.5			
750	73.5	1.21	2.24	4.22	8.70	15.1	20.7	27.6			

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f =$ Flowing pressure $P_s =$ Set pressure % OV = [($P_f - P_s$)/ P_s] x 100

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at set vacuum from table 6" Model 1360A 2. Calculate over-vacuum 100 mm WC Set Vacuum [P_s] 3. Read "C" factor from table 175 mm WC Flowing Vacuum [P_f] 4. Calculate flow capacity

Example—To find "C" factor from table:

```
Read "C" factor for 75% Over-vacuum at intersection of row 70 and column 5 "C" factor at 75% OV = 0.87
```

	"C" Factor Table									
%0V	0	1	2	3	4	5	6	7	8	9
10	0.42	0.43	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50
20	0.51	0.52	0.52	0.53	0.54	0.55	0.56	0.56	0.57	0.58
30	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.64	0.64	0.65
40	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72
50	0.72	0.73	0.73	0.74	0.75	0.75	0.76	0.77	0.77	0.78
60	0.78	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83	0.84
70	0.84	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.89	0.89
80	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94
90	0.95	0.95	0.96	0.96	0.97	0.97	0.98	0.99	0.99	1.00

Flow = 1,660 NCMH % OV = [(175 - 100)/100] x 100 = 75%

"C" = 0.87

 $Flow = 0.87 \times 1,660 = 1,444 \text{ NCMH}$

Model 1361A Vacuum Relief Capacity

Set Vacuum (P _s)	Air	Air Flow Capacity at 100% Over-vacuum (Double Set Vacuum) 1000 Standard Cubic Feet per Hour at 60° F							
PSIG	3″	4″	6″	8″	10″	12″	14″		
1.00	22.6	49.8	86.4	196	322	494	689		
1.10	23.6	52.0	90.2	204	336	516	720		
1.20	24.5	54.0	93.8	213	349	536	748		
1.30	25.4	56.0	97.2	220	362	556	775		
1.40	26.2	57.8	100	227	374	574	801		
1.50	27.0	59.6	103	234	385	591	825		
1.75	28.8	63.5	110	250	411	631	880		
2.00	30.4	67.0	116	264	433	665	928		
2.25	31.8	70.1	122	276	453	696	971		
2.50	33.1	72.8	126	287	471	723	1009		
2.75	34.1	75.2	131	296	486	747	1042		
3.00	35.1	77.3	134	304	500	767	1070		
3.25	35.9	79.0	137	311	511	785	1095		
3.50	36.5	80.5	140	317	520	799	1115		
>3.50		CONSU	LT FACTORY FO	r vacuum set	TINGS GREATE	R THAN 3.5 PS	SI		

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f =$ Flowing pressure $P_s =$ Set pressure % OV = [($P_f - P_s$)/ P_s] x 100

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation	1.	Read fl set vac
6" Model 1361A	2.	Calcula
2 PSIG set vacuum [P _s]	3.	Read "
3.5 PSIG flowing vacuum [P _f]	4.	Calcula

Read flow capacity at set vacuum from table Calculate over-vacuum

8. Read "C" factor from table

4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for **75%** Over-vacuum at intersection of row **70** and column **5** "C" factor at 75% OV = 0.83

	"C" Factor Table									
%0V	0	1	2	3	4	5	6	7	8	9
10			•	••Cons	ult Facto	ory•••				
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00

Flow = 116,000 SCFH

% OV = [(3.50 - 2.0)/2.0] x 100 = 75%

"C" = 0.83

Flow = 0.83 x 116,000 = 96,280 SCFH

Model 1361A Vacuum Relief Capacity

Set Vacuum (P _s)	Air	Air Flow Capacity at 100% Over-vacuum (Double Set Vacuum) 1000 Normal Cubic Meters per Hour at 0° C							
BarG	3″	4″	6″	8″	10″	12″	14″		
0.07	0.66	1.46	2.53	5.74	9.39	14.4	20.2		
0.10	0.77	1.71	2.96	6.72	11.0	16.9	23.7		
0.11	0.81	1.78	3.09	7.00	11.5	17.6	24.7		
0.12	0.84	1.85	3.20	7.26	11.9	18.3	25.6		
0.13	0.86	1.91	3.31	7.50	12.3	18.9	26.4		
0.14	0.89	1.96	3.41	7.72	12.6	19.4	27.2		
0.15	0.91	2.02	3.50	7.93	13.0	19.9	27.9		
0.16	0.94	2.07	3.58	8.12	13.3	20.4	28.6		
0.17	0.96	2.11	3.66	8.30	13.6	20.9	29.3		
0.18	0.98	2.15	3.73	8.47	13.9	21.3	29.8		
0.19	0.99	2.19	3.80	8.62	14.1	21.7	30.4		
0.20	1.01	2.23	3.86	8.76	14.3	22.0	30.9		
0.22	1.04	2.29	3.97	9.01	14.7	22.7	31.7		
0.24	1.06	2.34	4.06	9.21	15.1	23.2	32.4		
>0.24		CONSU	LT FACTORY FO	r vacuum set	TINGS GREATE	R THAN 0.24 I	BARG		

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-vacuum.

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

Read the flow capacity at 100% over-vacuum directly from the table above. Use linear interpolation if the set vacuum is not listed. (Ref: Page TPD1)

If the allowable over-vacuum is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-vacuum is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-vacuum by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f =$ Flowing pressure $P_s =$ Set pressure % OV = [($P_f - P_s$)/ P_s] x 100

Calculate flow capacity at less than 100% over-vacuum according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at set vacuum from table 6" Model 1361A 2. Calculate over-vacuum 0.12 BarG Set Vacuum [Ps] 3. Read "C" factor from table 0.17 BarG Flowing Vacuum [Pf] 4. Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for 42% Over-vacuum at intersection of row 40 and column 2 "C" factor at 42% OV = 0.55

	"C" Factor Table									
%0V	0	1	2	3	4	5	6	7	8	9
10			•	••Cons	ult Facto	ory•••				
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00

Flow = 3,200 NCMH

 $\% \text{ OV} = [(0.17 - 0.12)/0.12] \times 100 = 42\%$

"C" = 0.55

 $Flow = 0.55 \times 3,200 = 1,760 \text{ NCMH}$

FREE VENTS Model 5000

- Sizes 2" through 12"
- Available in carbon steel, stainless steel and other materials
- High flow capacity

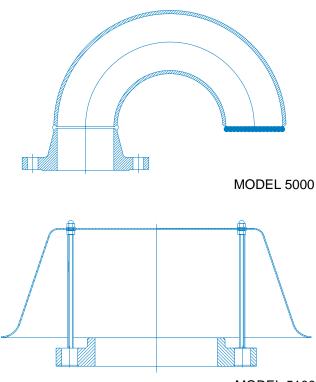
FREE VENTS

Model 5000 Series are designed to be used on tanks containing non-volatile liquids and on vent pipe extremities. Groth Free Vents offer efficient flow capacity for the protection of the tank.

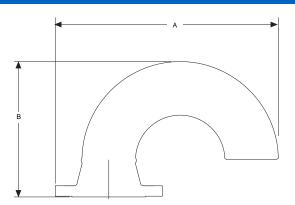
SPECIAL FEATURES

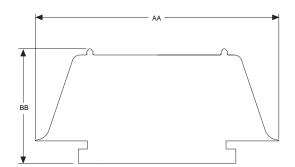
Model 5000 Series are built of corrosion resistant materials throughout. A wire mesh screen prevents foreign matter from entering the tank or pipe opening. Weather hoods are easily removable for inspection of vent and wire mesh screen.

GROTH, THE CAPABILITY COMPANY


As with all Groth products, every Model 5000 Series is factory inspected to meet all critical requirements and special needs. Inventory is maintained to insure rapid delivery.

MODEL 5100



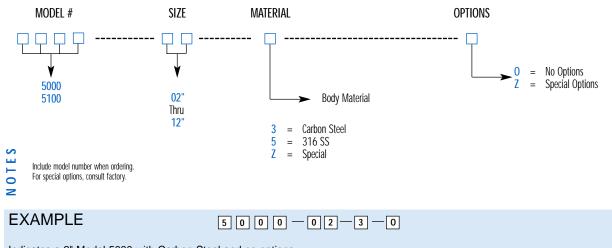

MODEL 5000

MODEL 5100

SPECIFICATIONS

MODEL 5100

MODEL 5000

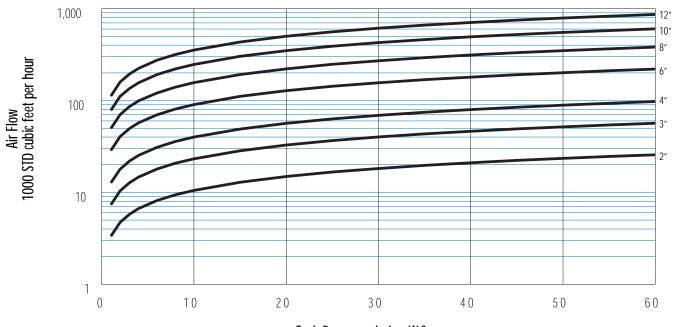

			opooliiodalorio odoje
Size* Flange	A Width (Metric)	B Height (Metric)	Approx. Ship. Wt. Lbs.
2″	101/4″	67/8″	8
(51 mm)	(260)	(175)	(4 kg)
3″	14 1/2″	9 1/4″	20
(76 mm)	(368)	(235)	(9 kg)
4″	183/4"	113/8″	35
(102 mm)	(476)	(289)	(16 kg)
6″	267/8"	1511/16″	70
(152 mm)	(683)	(398)	(32 kg)
8″	351/8"	201/8"	135
(203 mm)	(892)	(511)	(61 kg)
10″	433/8"	24″	235
(254 mm)	(1102)	(610)	(107 kg)
12″	517/8"	287/16"	350
(305 mm)	(1318)	(722)	(159 kg)

Specifications subj	ect to change without notice. Certified dimens	Specifications subject to change without notice. Certified dimensions available upon request.								
rox. Ship. /t. Lbs.		Size* Flange	AA Width (Metric)	BB Height (Metric)	Approx. Ship. Wt. Lbs. (CS / SS)					
8		2″	9 1/2″	53/8"	11					
(4 kg)		(51 mm)	(241)	(137)	(5 kg)					
20		3″	11 1/2″	513/16"	14					
(9 kg)		(76 mm)	(292)	(148)	(6 kg)					
35		4″	13″	6 ^{5/16} ″	18					
(16 kg)		(102 mm)	(330)	(160)	(8 kg)					
70		6″	17″	73/8″	28					
(32 kg)		(152 mm)	(432)	(187)	(13 kg)					
135		8″	19 1/2″	9 1/4″	42					
(61 kg)		(203 mm)	(495)	(235)	(19 kg)					
235		10″	23 ^{1/2} "	105/8″	60					
(107 kg)		(254 mm)	(597)	(270)	(27 kg)					
350		12″	25 ^{1/2} "	11 1/8″	95					
(159 kg)		(305 mm)	(648)	(283)	(43 kg)					

* Larger sizes available on special application.

HOW TO ORDER

For easy ordering, select proper model numbers

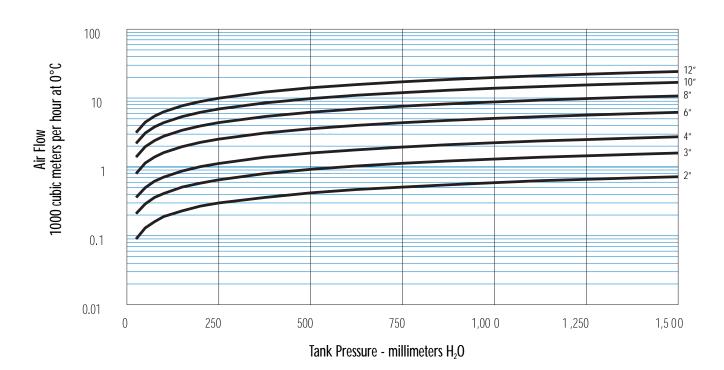


Indicates a 2" Model 5000 with Carbon Steel and no options.

Tank P	Pressure		Air Flo	w - 1000 :	Standard C	ubic feet p	oer Hour	
In W.C.	Oz/Sq In	2″	3″	4″	6″	8″	10″	12″
1	0.58	3.34	7.34	12.7	28.6	49.6	78.2	112
2	1.16	4.72	10.4	17.9	40.5	70.2	111	159
3	1.73	5.78	12.7	21.9	49.5	85.9	135	194
4	2.31	6.67	14.7	25.3	57.2	99.2	156	224
6	3.47	8.17	18.0	31.0	70.0	121	192	275
8	4.62	9.44	20.8	35.8	80.9	140	221	317
10	5.78	10.5	23.2	40.0	90.4	157	247	354
15	8.66	12.9	28.4	48.9	111	192	303	434
20	11.6	14.9	32.8	56.5	128	221	349	501
25	14.4	16.7	36.6	63.1	143	248	390	560
30	17.3	18.2	40.1	69.1	156	271	427	613
35	20.2	19.7	43.3	74.6	169	293	461	662
40	23.1	21.0	46.3	79.7	180	313	493	707
45	26.0	22.3	49.1	84.5	191	332	523	750
50	28.9	23.5	51.7	89.1	201	349	551	790
55	31.8	24.6	54.2	93.4	211	366	577	828
60	34.7	25.7	56.6	97.5	220	382	603	864

Flow facility and equipment comply with API 2000.
 Flow measurement accuracy verified by an independent research organization.

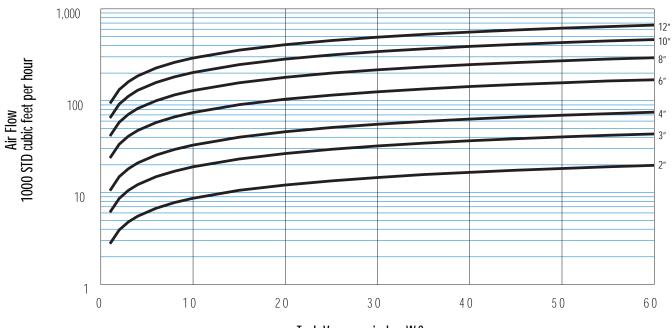
3. Flow capacity is based on actual tests and certified by Groth Corporation.



Tank Pressure - inches W.C.

Tank Pr	essure		Air Flo	w - 1000 (Cubic Meter	rs per Hour	at 0°C	
mm H₂O	mb	2″	3″	4″	6″	8″	10″	12″
25	2.45	0.09	0.21	0.36	0.80	1.39	2.20	3.15
50	4.90	0.13	0.29	0.50	1.14	1.97	3.11	4.46
75	7.35	0.16	0.36	0.62	1.39	2.41	3.81	5.46
100	9.80	0.19	0.41	0.71	1.61	2.79	4.40	6.30
150	14.7	0.23	0.51	0.87	1.97	3.41	5.38	7.72
200	19.6	0.27	0.58	1.01	2.27	3.94	6.21	8.91
250	24.5	0.30	0.65	1.12	2.54	4.41	6.95	9.96
375	36.8	0.36	0.80	1.38	3.11	5.39	8.50	12.2
500	49.0	0.42	0.92	1.59	3.59	6.23	9.81	14.1
625	61.3	0.47	1.03	1.77	4.01	6.96	11.0	15.7
750	73.5	0.51	1.13	1.94	4.39	7.62	12.0	17.2
875	85.8	0.55	1.22	2.10	4.74	8.22	13.0	18.6
1000	98.0	0.59	1.30	2.24	5.07	8.79	13.9	19.9
1125	110	0.63	1.38	2.38	5.37	9.32	14.7	21.1
1250	123	0.66	1.45	2.50	5.66	9.82	15.5	22.2
1375	135	0.69	1.52	2.62	5.94	10.3	16.2	23.3
1500	147	0.72	1.59	2.74	6.20	10.7	16.9	24.3

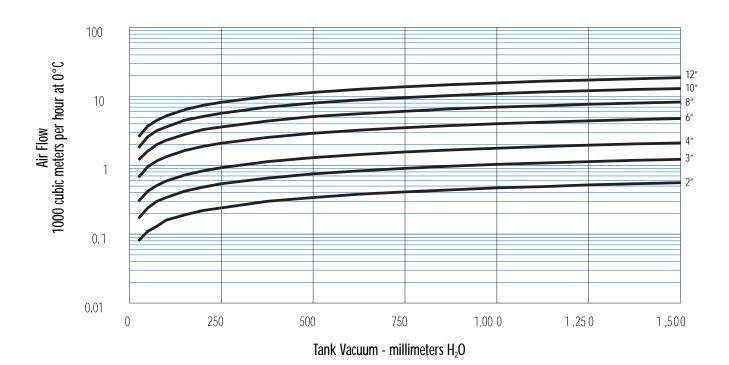
Flow facility and equipment comply with API 2000.
 Flow measurement accuracy verified by an independent research organization.


3. Flow capacity is based on actual tests and certified by Groth Corporation.

Tank V	/acuum		Air Flov	v - 1000 S	Standard (Cubic feet p	oer Hour	
In W.C.	Oz/Sq In	2″	3″	4″	6″	8″	10″	12″
1	0.58	2.78	6.11	10.5	23.8	41.3	65.1	93.4
2	1.16	3.92	8.63	14.9	33.6	58.3	91.9	132
3	1.73	4.80	10.6	18.2	41.1	71.3	112	161
4	2.31	5.53	12.2	21.0	47.4	82.3	130	186
6	3.47	6.76	14.9	25.6	57.9	100	158	227
8	4.62	7.79	17.1	29.5	66.7	116	182	262
10	5.78	8.68	19.1	32.9	74.4	129	203	292
15	8.66	10.6	23.2	40.0	90.5	157	247	355
20	11.6	12.1	26.6	45.9	104	180	284	407
25	14.4	13.4	29.6	51.0	115	200	315	452
30	17.3	14.6	32.2	55.4	125	217	343	491
35	20.2	15.7	34.5	59.4	134	233	367	527
40	23.1	16.6	36.6	63.1	143	247	390	559
45	26.0	17.5	38.5	66.4	150	260	411	589
50	28.9	18.3	40.3	69.5	157	272	430	616
55	31.8	19.1	42.0	72.3	164	284	447	641
60	34.7	19.8	43.5	75.0	169	294	463	665

Flow facility and equipment comply with API 2000.
 Flow measurement accuracy verified by an independent research organization.

3. Flow capacity is based on actual tests and certified by Groth Corporation.

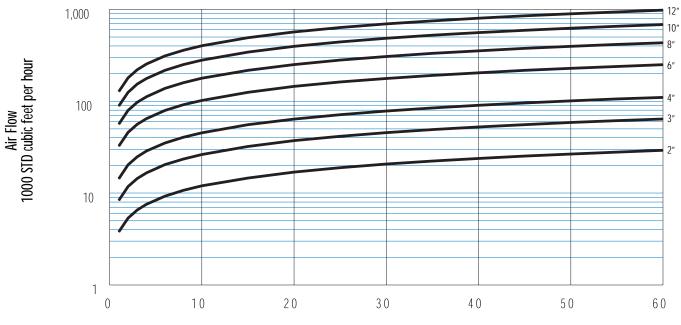

Tank Vacuum - inches W.C.

Model 5000 Vacuum Relief Capacity

Tank V	acuum		Air Flow	/ - 1000 C	ubic Meter	s per Hou	ir at 0°C	
mm H₂O	mb	2″	3″	4″	6″	8″	10″	12″
25	2.5	0.08	0.17	0.30	0.67	1.2	1.8	2.6
50	4.9	0.11	0.24	0.42	0.95	1.6	2.6	3.7
75	7.4	0.13	0.30	0.51	1.16	2.0	3.2	4.5
100	9.8	0.16	0.34	0.59	1.33	2.3	3.6	5.2
150	14.7	0.19	0.42	0.72	1.63	2.8	4.5	6.4
200	19.6	0.22	0.48	0.83	1.88	3.3	5.1	7.4
250	24.5	0.24	0.54	0.92	2.09	3.6	5.7	8.2
375	36.8	0.30	0.65	1.13	2.54	4.4	7.0	10.0
500	49.0	0.34	0.75	1.29	2.92	5.1	8.0	11.4
625	61.3	0.38	0.83	1.43	3.24	5.6	8.9	12.7
750	73.5	0.41	0.90	1.56	3.52	6.1	9.6	13.8
875	85.8	0.44	0.97	1.67	3.78	6.6	10.3	14.8
1000	98.0	0.47	1.03	1.77	4.01	7.0	11.0	15.7
1125	110	0.49	1.08	1.87	4.23	7.3	11.6	16.6
1250	123	0.52	1.13	1.96	4.42	7.7	12.1	17.3
1375	135	0.54	1.18	2.04	4.60	8.0	12.6	18.0
1500	147	0.56	1.22	2.11	4.77	8.3	13.0	18.7

Flow facility and equipment comply with API 2000.
 Flow measurement accuracy verified by an independent research organization.

3. Flow capacity is based on actual tests and certified by Groth Corporation.

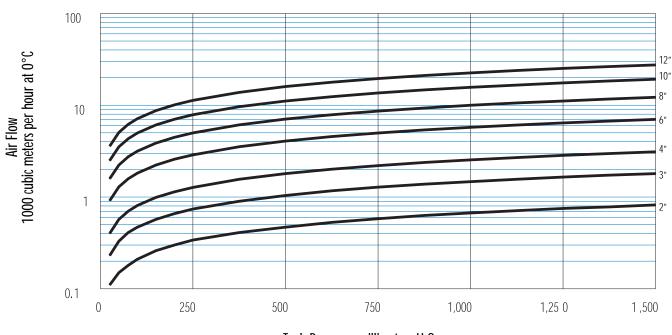


Tank P	ressure		Air Flov	v - 1000 S	tandard C	ubic feet p	er Hour	
In W.C.	Oz/Sq In	2″	3″	4″	6″	8″	10″	12″
1	0.58	3.78	8.32	14.3	32.4	56.2	88.6	127
2	1.16	5.35	11.8	20.3	45.8	79.5	125	180
3	1.73	6.55	14.4	24.8	56.1	97.4	154	220
4	2.31	7.56	16.6	28.7	64.8	112	177	254
6	3.47	9.26	20.4	35.1	79.4	138	217	311
8	4.62	10.7	23.5	40.5	91.7	159	251	359
10	5.78	12.0	26.3	45.3	102	178	280	402
15	8.66	14.6	32.2	55.5	125	217	343	492
20	11.6	16.9	37.2	64.0	145	251	396	568
25	14.4	18.9	41.5	71.5	162	281	442	634
30	17.3	20.7	45.5	78.3	177	307	484	695
35	20.2	22.3	49.1	84.6	191	332	523	750
40	23.1	23.8	52.4	90.4	204	354	559	801
45	26.0	25.3	55.6	95.8	217	376	592	850
50	28.9	26.6	58.6	101	228	396	624	895
55	31.8	27.9	61.4	106	239	415	654	938
60	34.7	29.2	64.1	110	250	433	683	980

1. Flow facility and equipment comply with API 2000.

2. Flow measurement accuracy verified by an independent research organization.

3. Flow capacity is based on actual tests and certified by Groth Corporation.

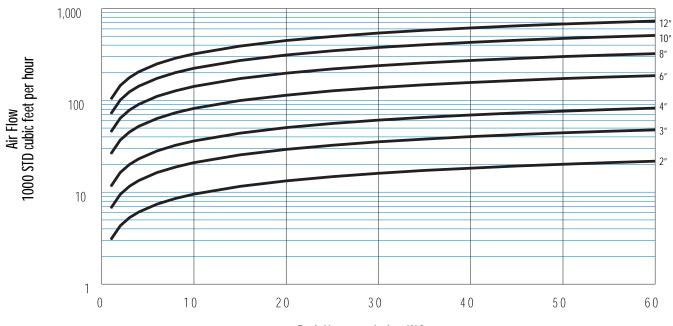


Tank Pressure - inches W.C.

Tank Pr	essure		Air Flov	N - 1000 (Cubic Mete	rs per Hou	r at 0°C	
mm H₂O	mb	2″	3″	4″	6″	8″	10″	12″
25	2.45	0.11	0.23	0.40	0.91	1.58	2.49	3.57
50	4.90	0.15	0.33	0.57	1.29	2.23	3.52	5.05
75	7.35	0.18	0.41	0.70	1.58	2.74	4.31	6.19
100	9.80	0.21	0.47	0.81	1.82	3.16	4.98	7.14
150	14.7	0.26	0.57	0.99	2.23	3.87	6.10	8.75
200	19.6	0.30	0.66	1.14	2.58	4.47	7.04	10.1
250	24.5	0.34	0.74	1.27	2.88	4.99	7.87	11.3
375	36.8	0.41	0.90	1.56	3.53	6.11	9.64	13.8
500	49.0	0.47	1.04	1.80	4.07	7.06	11.1	16.0
625	61.3	0.53	1.17	2.01	4.55	7.88	12.4	17.8
750	73.5	0.58	1.28	2.20	4.98	8.63	13.6	19.5
875	85.8	0.63	1.38	2.38	5.38	9.32	14.7	21.1
1000	98.0	0.67	1.47	2.54	5.74	10.0	15.7	22.5
1125	110	0.71	1.56	2.69	6.09	10.6	16.6	23.9
1250	123	0.75	1.65	2.84	6.42	11.1	17.5	25.2
1375	135	0.78	1.73	2.97	6.73	11.7	18.4	26.4
1500	147	0.82	1.80	3.11	7.02	12.2	19.2	27.5

Flow facility and equipment comply with API 2000.
 Flow measurement accuracy verified by an independent research organization.

3. Flow capacity is based on actual tests and certified by Groth Corporation.

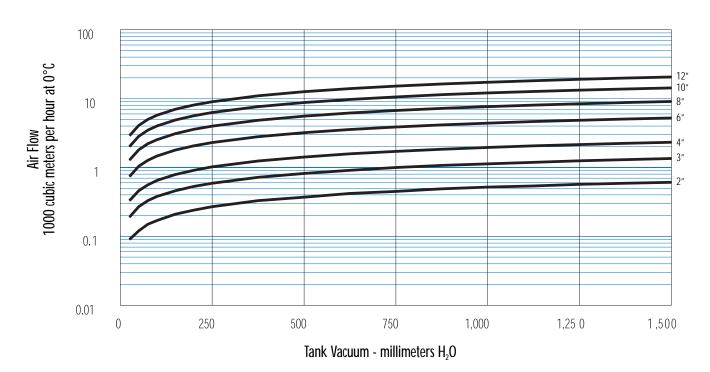


Tank Pressure -millimeters H₂O

Tank V	/acuum		Air Flov	v - 1000 S	Standard C	ubic feet p	oer Hour	
In W.C.	Oz/Sq In	2″	3″	4″	6″	8″	10″	12″
1	0.58	3.06	6.72	11.6	26.2	45.4	71.6	103
2	1.16	4.32	9.49	16.4	37.0	64.1	101	145
3	1.73	5.28	11.6	20.0	45.2	78.5	124	177
4	2.31	6.09	13.4	23.1	52.2	90.5	143	205
6	3.47	7.44	16.4	28.2	63.7	111	174	250
8	4.62	8.56	18.8	32.5	73.4	127	201	288
10	5.78	9.55	21.0	36.2	81.8	142	224	321
15	8.66	11.6	25.5	44.0	99.6	173	272	390
20	11.6	13.3	29.3	50.5	114	198	312	448
25	14.4	14.8	32.5	56.1	127	220	347	497
30	17.3	16.1	35.4	61.0	138	239	377	541
35	20.2	17.3	37.9	65.4	148	256	404	580
40	23.1	18.3	40.3	69.4	157	272	429	615
45	26.0	19.3	42.4	73.1	165	286	452	648
50	28.9	20.2	44.4	76.4	173	300	473	678
55	31.8	21.0	46.2	79.6	180	312	492	705
60	34.7	21.8	47.8	82.5	186	323	510	731

Flow facility and equipment comply with API 2000.
 Flow measurement accuracy verified by an independent research organization.

3. Flow capacity is based on actual tests and certified by Groth Corporation.



Tank Vacuum - inches W.C.

Tank Va	acuum		Air Flow	v - 1000 C	ubic Meter	s per Hou	r at 0°C	
mm H₂O	mb	2″	3″	4″	6″	8″	10″	12″
25	2.45	0.09	0.19	0.33	0.74	1.28	2.01	2.89
50	4.90	0.12	0.27	0.46	1.04	1.80	2.84	4.08
75	7.35	0.15	0.33	0.56	1.27	2.21	3.48	4.99
100	9.80	0.17	0.38	0.65	1.47	2.54	4.01	5.75
150	14.7	0.21	0.46	0.79	1.79	3.11	4.90	7.02
200	19.6	0.24	0.53	0.91	2.06	3.58	5.64	8.09
250	24.5	0.27	0.59	1.02	2.30	3.99	6.29	9.02
375	36.8	0.33	0.72	1.24	2.80	4.85	7.65	11.0
500	49.0	0.37	0.82	1.42	3.21	5.57	8.78	12.6
625	61.3	0.42	0.91	1.58	3.56	6.18	9.74	14.0
750	73.5	0.45	1.00	1.71	3.88	6.72	10.6	15.2
875	85.8	0.49	1.07	1.84	4.16	7.21	11.4	16.3
1000	98.0	0.52	1.13	1.95	4.41	7.65	12.1	17.3
1125	110	0.54	1.19	2.06	4.65	8.06	12.7	18.2
1250	123	0.57	1.25	2.15	4.86	8.43	13.3	19.1
1375	135	0.59	1.30	2.24	5.06	8.78	13.8	19.9
1500	147	0.61	1.35	2.32	5.25	9.10	14.3	20.6

Flow facility and equipment comply with API 2000.
 Flow measurement accuracy verified by an independent research organization.

3. Flow capacity is based on actual tests and certified by Groth Corporation.

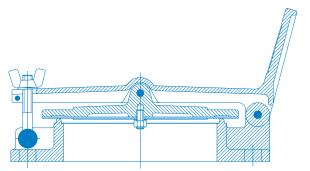
GAUGE HATCH Model 6000

- Sizes 4" through 10"
- Constructed in aluminum, carbon steel, stainless steel, and additional materials.
- Available in free lift or lock downcover
- Designed to assure uniform seating

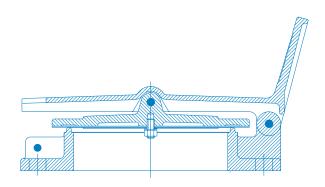
GAUGE HATCH

Model 6000 Series provide access for gauging or obtaining product samples from storage tanks. The Model 6000 also provides pressure relief as emergency venting. The Model 6100 incorporates a positive cover hold down which assures a premium tight seal on tanks with internal pressures up to 3 PSIG. Gasketed covers are recommended on tanks with high pressure settings. Model 6100 offers lock down capability.

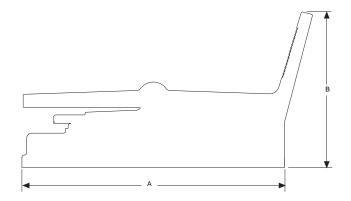
SPECIAL FEATURES

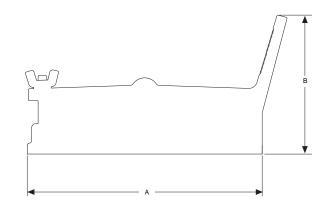

Model 6000 Series is designed with a serrated foot treadle surface to avoid foot slippage when opening. This model permits the use of both hands during gauging or sampling. Gravity will close the cover upon removal of pressure on the foot treadle. Groth's special "cushioned-air" seating or metal-to-metal seatings available.

GROTH, THE CAPABILITY COMPANY


As with all Groth products, every Model 6000 Series is factory inspected and tested to meet your critical requirements and special needs. Inventory is maintained to insure rapid delivery.

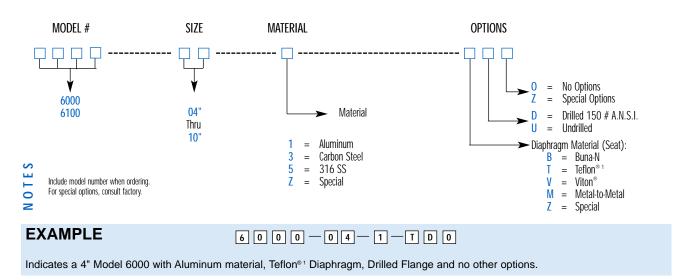
MODEL 6100




MODEL 6100

MODEL 6000

SPECIFICATIONS


Specifications subject to change without notice. Certified dimensions available upon request.

Size	A Width (Metric)	B Height (Metric)	Approx. Ship Wt. Lbs. (Aluminum)
4″	10″	6″	7
(102 mm)	(254)	(152)	(3 Kg)
6″	12 ^{1/2} ″	8″	10
(152 mm)	(318)	(203)	(5 Kg.)
8″	15″	8″	13
(203 mm)	(381)	(203)	(6 Kg)
10″	173/4″	9″	17
(254 mm)	(451)	(229)	(8 Kg)

¹ When gauge hatch includes the lock down feature, change model number to 6100. ¹ 150 # A.N.S.I. drilling compatibility, F.F. on aluminum, carbon steel and stainless steel alloys.

HOW TO ORDER

For easy ordering, select proper model numbers

1 Teflon is a registered trademark of DuPont Corporation.

GAUGE HATCH Model 6200

- Low Cost Design
- Size 8"
- Constructed in aluminum (type 356) with Buna-N seat insert.
- Available in free lift cover
- Set 2 oz/in² in free lift design
- 150# ANSI Flat Face drilled flange

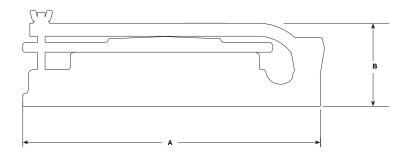
GAUGE HATCH

Model 6200 provides access for gauging or obtaining product samples from storage tanks. The Model 6200 also provides pressure relief as emergency venting.

SPECIAL FEATURES

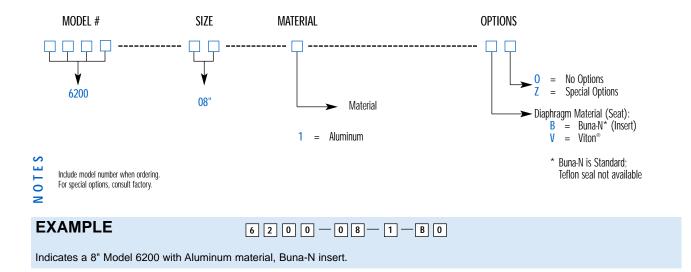
Models 6200 will stay in the full open position which will permit the use of both hands during gauging or sampling. Units are mass produced in type 356 aluminum cover and base with a Buna-N seat insert. Optional seals are available.

GROTH, THE CAPABILITY COMPANY


As with all Groth products, every Model 6200 is factory inspected and tested to meet your critical requirements and special needs. Inventory is maintained to insure rapid delivery.

MODEL 6200

MODEL 6200


Specifications subject to change without notice. Certified dimensions available upon request.

Size	A	B	Approx.
	Width	Height	Ship.
	(mm)	(mm)	Wt. Lbs. (kg)
8″	13 1/2″	31/2″	10
(200)	(343)	(89)	(5)

⁺ When gauge hatch includes the lock down feature, change model number to 6300. ⁺150 # flat face A.N.S.I. drilling compatibility.

HOW TO ORDER

For easy ordering, select proper model numbers

SECTION 4

EMERGENCY PRESSURE RELIEF VALVES

- 2000A, 2050A Emergency Pressure Relief Valves
 - 2100 Emergency Pressure Relief Valves •
- 2400A, 2450A Emergency Pressure Relief Valves
 - 2500A Pilot-Operated Emergency Relief Valves •

EMERGENCY PRESSURE RELIEF VALVE

Sizes 16," 20" and 24"

- Pressure settings 1.5 16 oz/in²
- Vacuum settings 0.5 4 oz/in²
- Available in carbon steel, stainless steel, fiberglass and other materials
- Easy access manway combined with emergency relief.

EMERGENCY PRESSURE RELIEF VALVE

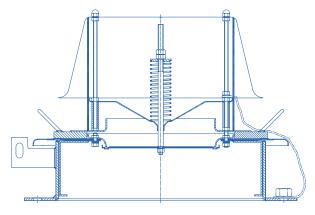
Model 2000A is designed to provide emergency relief capacity beyond that furnished by the normal operating pressure relief valve on the tank. The valve protects the tank against rupture or explosion that could result from excessive internal pressures caused by fire, etc. As excessive pressure builds up, Model 2000A relieves, then reseats when over pressure has been dissipated. Removable stops can be provided which restrict the lift of the cover.

SPECIAL FEATURES

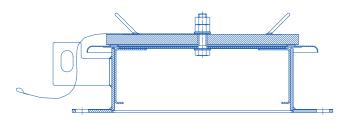
Model 2000A is built of corrosion resistant materials throughout. A restraining cable connects the head and flange and also serves as a grounding cable. Groth's special Teflon^{® 1} "cushioned air" pallet and peripheral guiding insures proper alignment and integrity of seating. Model 2050A incorporates a vacuum breaker.

GROTH, THE CAPABILITY COMPANY

As with all Groth products, every Model 2000A is factory inspected and tested to meet your critical requirements and special needs. Inventory is maintained to insure rapid delivery.

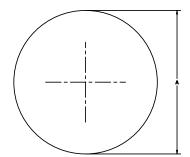


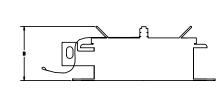
MODEL 2000A (PRESSURE)

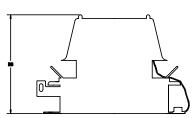


Model 2000A

MODEL 2050A (PRESSURE & VACUUM)




MODEL 2050A



¹ Teflon is a registered trademark of DuPont Corporation.

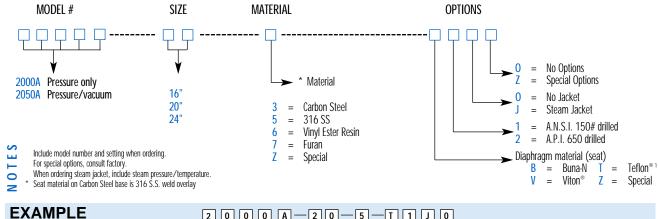
MODEL 2000A

MODEL 2000A

Specifications subject to change without notice. Certified dimensions available upon request.

Size*	Minimum Pressure Setting Weight Loaded	Maximum Pressure Setting Weight Loaded	A Width (mm)	B Height [†] (mm)	Approx. Ship. Weight Lbs. (kg) (At min. setting)
16" (400mm)	1.80 oz/in ² (7.8 mbar)		23 ^{1/2} " (597)	11″ (279)	62 (28)
20"	1.60 oz/in ²	16 oz/in²	27 ^{1/2} "	11"	88
(500 mm)	(6.9 mbar)	(69 mbar)	(699)	(279)	(40)
24″	1.50 oz/in ²		32″	11″	114
(600 mm)	(6.5 mbar)		(813)	(279)	(52)

MODEL 2050A


Specifications subject to change without notice. Certified dimensions available upon request.

	Minimur	n Setting	Max. Settings	А	BB Height	Approx. Ship.	
	Pressure	Vacuum	Pressure [▲]	Width	Closed	Weight Lbs. (kg)	
Size*	Weight Loaded	Spring Loaded	Weight Loaded	(mm)	(mm)	(At min. setting)	
16″	2.6 oz/in ²			23 1/2 "	17 3/4 ″	69	
(400 mm)	(11.2 mbar)			(597)	(451)	(31)	
20″	2.1 oz/in ²	0.5 oz/in²	8 oz/in²	27 1/2 "	17 ^{3/4} ″	95	
(500 mm)	(9.1 mbar)	(2.2 mbar)	(34.5 mbar)	(699)	(451)	(43)	
24″	1.9 oz/in²			32″	17 3/4 ″	120	
(600 mm)	(8.2 mbar)			(813)	(451)	(55)	

* 150# A.N.S.I. or API 650 drilling compatibility. "Caution" — See IOM when mounting to API 650 flange. Amaximum pressure setting on 16" size = 4 oz/sq. in. Max. Vacuum Setting is 4 oz./sq. in. Fiberglass dimensions on request.

HOW TO ORDER

For easy ordering, select proper model numbers

2 0 0 0 A - 2 0 - 5 - T 1 J 0

indicates a 20" Model 2000A with 316 SS Material, Teflon®1 Seat Diaphragm, ANSI 150# Drilled, Steam Jacket and no other options.

¹ Teflon is a registered trademark of DuPont Corporation.

Model 2000A Emergency Pressure Relief Capacity

	ure/Vacuum P_)	Air Flow Capac	ity at 100% Over-pro 1000 Standard Cubio	essure (Double Set Pr c Feet per Hour at 60		n)
In WC	Oz/Sq In	16" Pressure	20" Pressure	24" Pressure	All Vacuum	2050 Only
0.87	0.50 *				65	Use
1.73	1.00 *				91	"C"
2.60	1.50	422	668	970		Factor
3.00	1.73	454	718	1043		Chart on
3.46	2.00 *	487	771	1120	129	Page
4.00	2.31	524	829	1204		412 for
4.33	2.50	545	862	1252		Vacuum
5.00	2.89	585	926	1345		Flow
5.19	3.00 *	597	944	1371	157	
6.93	4.00 *	689	1090	1583	180	
10.4	6.00	843	1334	1937		
13.9	8.00	973	1539	2236		
17.3	10.0	1087	1720	2498		
20.8	12.0	1190	1883	2735		
24.2	14.0	1284	2033	2952		
27.7	16.0	1372	2172	3154		

* Standard vacuum settings, consult factory for other settings Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

Vacuum flow rating applies only to Model 2050A.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative. Note: Vacuum capacity is modified using the "C" factor on page 412.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f = Flowing pressure$ $P_s = Set pressure$ $\% OP = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

"C" f	"C" factor at 75% OP = 0.95									
	"C" Factor Table - Pressure Only									
%0P	0	1	2	3	4	5	6	7	8	9
10	0.70	0.71	0.71	0.72	0.72	0.73	0.73	0.74	0.74	0.75
20	0.75	0.76	0.76	0.77	0.77	0.78	0.78	0.79	0.79	0.80
30	0.80	0.81	0.81	0.82	0.82	0.83	0.83	0.84	0.84	0.85
40	0.85	0.86	0.86	0.87	0.87	0.88	0.88	0.89	0.89	0.90
50	0.90	0.90	0.90	0.91	0.91	0.91	0.91	0.91	0.92	0.92
60	0.92	0.92	0.92	0.93	0.93	0.93	0.93	0.93	0.94	0.94
70	0.94	0.94	0.94	0.95	0.95	0.95	0.95	0.95	0.96	0.96
80	0.96	0.96	0.96	0.97	0.97	0.97	0.97	0.97	0.98	0.98
90	0.98	0.98	0.98	0.99	0.99	0.99	0.99	0.99	1.00	1.00

Read "C" factor for 75% Over-pressure at intersection of row 70 and column 5

Example—To find "C" factor from table:

Example—Flow Capacity Calculation	1.	Read flow capacity at	Elaw 020.000 00511	Туре	2000A	2050A	
20" Model 2000A	2.	set pressure from table Calculate over-pressure	Flow = 829,000 SCFH % OP = [(7 - 4)/4] x 100 = 75%	Pressure	~	~	
4 In WC set pressure [P _s]	3.	Read "C" factor from table	"C" = 0.95				
7 In WC flowing pressure $[P_f]$	4.	Calculate flow capacity	Flow = 0.95 x 829,000 = 787,550 SCFH	Vacuum		~	

Model 2000A Emergency Pressure Relief Capacity

	ure/Vacuum		Air Flow Capacity at 100% Over-pressure (Double Set Pressure/Vacuum) 1000 Standard Cubic Meters per Hour at 0° C						
mm WC	mb		16" Pressure	20" Pressure	24" Pressure	All Vacuum	2050 Only		
22	2.16	*				1.83	Use		
44	4.31	*				2.58	"C"		
88	8.63	*	13.8	21.9	31.7	3.63	Factor		
100	9.80		14.7	23.3	33.8		Chart on		
132	12.9	*	16.9	26.8	38.9	4.42	Page		
176	17.3	*	19.5	30.9	44.9	5.08	413		
200	19.6		20.8	32.9	47.8		for Vacuum		
250	24.5		23.2	36.8	53.4		Flow		
300	29.4		25.5	40.3	58.5				
350	34.3		27.5	43.5	63.2				
400	39.2		29.4	46.5	67.5				
500	49.0		32.8	51.9	75.4				
600	58.8		35.9	56.9	82.6				
700	68.6		38.8	61.4	89.1				

* Standard vacuum settings, consult factory for other settings

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

%**OP**

10

20

30

40

50

60

70

80

90

0

0.70

0.75

0.80

0.85

0.90

0.92

0.94

0.96

0.98

Flow capacity values listed above are based on full open valves at 100% over-pressure.

Example—To find "C" factor from table:

"C"

1

0.71

0.76

0.81

0.86

0.90

0.92

0.94

0.96

0.98

Read "C" factor for 75% Over-pressure at intersection of row 70 and column 5 "C" factor at 75% OP = **0.95**

3

0.72

0.77

0.82

0.87

0.91

0.93

0.95

0.97

0.99

2

0.71

0.76

0.81

0.86

0.90

0.92

0.94

0.96

0.98

Factor Table - Pressure Only

5

0.73

0.78

0.83

0.88

0.91

0.93

0.95

0.97

0.99

6

0.73

0.78

0.83

0.88

0.91

0.93

0.95

0.97

0.99

7

0.74

0.79

0.84

0.89

0.91

0.93

0.95

0.97

0.99

4

0.72

0.77

0.82

0.87

0.91

0.93

0.95

0.97

0.99

Vacuum flow rating applies only to Model 2050A.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative. Note: Vacuum capacity is modified using the "C" factor on page 413.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f = Flowing pressure$ $P_s = Set pressure$ $\% \text{ OP} = [(P_f - P_s)/P_s] \times 100$

20" Model 2000A

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation

100 mm WC Set Pressure [P_s]

1. Read flow capacity at

- 2. Calculate over-pressure
- 3. Read "C" factor from table
- 175 mm WC Flowing Pressure [Pf]
- set pressure from table
- 4. Calculate flow capacity
- Flow = 23,300 NCMH $\% \text{ OP} = [(175 - 100)/100] \times 100 = 75\%$ "C" = 0.95

Flow = 0.95 x 23,300 = 22,135 NCMH

Туре	2000A	2050A
Pressure	~	~
Vacuum		~

9

0.75

0.80

0.85

0.90

0.92

0.94

0.96

0.98

1.00

8

0.74

0.79

0.84

0.89

0.92

0.94

0.96

0.98

1.00

EMERGENCY PRESSURE RELIEF VALVE

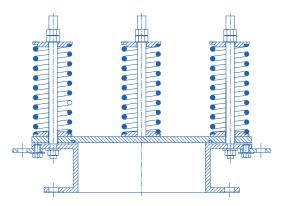
Model 2100

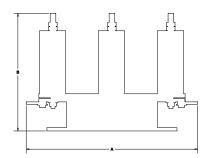
- Sizes 16," 20" and 24"
- Pressure settings 1 15 PSIG
- Available in carbon steel, stainless steel and other materials
- Unique design spring loaded cover

EMERGENCY PRESSURE RELIEF VALVE

Model 2100 is designed to provide emergency relief capacity beyond that furnished by the normal operating pressure relief valve on the tank. The Valve protects the tank against rupture or explosion that could result from excessive internal pressures caused by fire, etc. Model 2100 is designed to be self-closing. As excessive pressure builds up, Model 2100 relieves, then reseats when the overpressure has been dissipated.

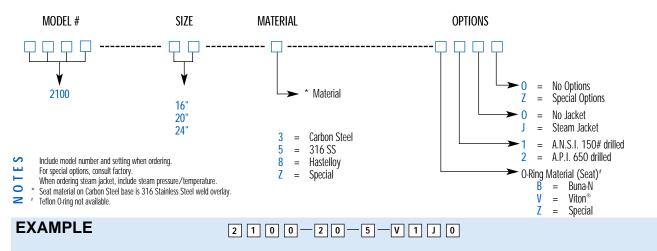
SPECIAL FEATURES


Model 2100 is built of corrosion resistant materials throughout. It is designed with independently adjustable springs which load the cover and keep the valve tightly sealed until emergency relief is required. Model 2100 features Viton[®] seating to insure a tight seal.


GROTH, THE CAPABILITY COMPANY

As with all Groth products, every Model 2100 is factory inspected and tested to meet your critical requirements and special needs. Inventory is maintained to insure rapid delivery.

MODEL 2100



			Sp	ecifications subject to cha	nge without notice. Certified di	mensions available upon request.	
Size* Flange	Flange Setting		tting Setting Width		Approx Weight	rox. Shipping ght Lbs. (kg)	
(Metric)	Pressure Spring Loaded	Pressure Spring Loaded	(mm)	(mm)	(At min. set.)	(At max. set.)	
16" (400 mm)			36 ^{3/4} " (933)	23″ (584)	310 (141)	490 (223)	
20" (500 mm)	1 PSIG (69 mbar)	15 PSIG (1.03 bar)	36 ^{3/4} " (933)	23″ (584)	335 (152)	500 (227)	
24" (600 mm)			40 ^{3/4} ″ (1035)	27″ (686)	420 (190)	670 (304)	

* 150# A.N.S.I. drilling compatibility, or API 650 drilled Flange option

HOW TO ORDER

For easy ordering, select proper model numbers

indicates a 20" Model 2100 with 316 SS Material, Viton® Seat O-Ring, ANSI 150# Drilled, Steam Jacket and no other options.

EMERGENCY PRESSURE RELIEF VALVE

Model 2100 Emergency Pressure Relief Capacity

Set Pressure (P _s)	Air Flow Capacity at 100% Over-pressure (Double Set Pressure) 1000 Standard Cubic Feet per Hour at 60° F						
PSIG	16″	20″	24″				
1.00	609	952	1371				
2.00	857	1340	1930				
3.00	1045	1633	2352				
4.00	1201	1877	2704				
5.00	1337	2089	3009				
6.00	1458	2278	3282				
7.00	1568	2450	3529				
8.00	1669	2608	3757				
9.00	1763	2755	3969				
10.0	1851	2893	4167				
11.0	1934	3022	4353				
12.0	2012	3145	4530				
13.0	2087	3261	4697				
14.0	2158	3372	4857				
15.0	2226	3478	5010				

Flow capacity values listed above are based on full open valves at 100% over-pressure.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f =$ Flowing pressure $P_s =$ Set pressure $\% OP = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—To find "C" factor from table:

Read "C" factor for **75%** Over-pressure at intersection of row **70** and column **5** "C" factor at 75% OP = 0.83

	"C" Factor Table									
% O P	0	1	2	3	4	5	6	7	8	9
10			•	••Consi	ult Facto	ory•••				
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00

Flow =	0.83 x 1,877,000 = 1,557,910 SCFH
"C" = C).83
% OP =	$[(7 - 4)/4] \times 100 = 75\%$
Flow =	1,877,000 SCFH

Example—Flow Capacity Calculation

20" Model 2100 4 PSIG set pressure [P_s] 7 PSIG flowing pressure [P_f] Calculate over-pressure
 Read "C" factor from table
 Calculate flow capacity

1. Read flow capacity at set pressure from table

Model 2100 Emergency Pressure Relief Capacity

Set Pressure (P _s)	Air Flow Capacity at 100% Over-pressure (Double Set Pressure) 1000 Standard Cubic Meters per Hour at 0°C					
BarG	16″	20″	24″			
0.07	17.8	27.8	39.9			
0.10	21.2	33.1	47.6			
0.15	25.8	40.4	58.1			
0.20	29.7	46.5	66.8			
0.25	33.1	51.8	74.5			
0.30	36.2	56.6	81.3			
0.35	38.9	60.9	87.5			
0.40	41.5	64.9	93.3			
0.45	43.9	68.6	98.6			
0.50	46.1	72.1	104			
0.55	48.2	75.4	108			
0.60	50.2	78.5	113			
0.70	53.9	84.3	121			
0.80	57.3	89.6	129			
0.90	60.5	94.6	136			
1.00	63.4	99.2	143			

Flow capacity values listed above are based on full open valves at 100% over-pressure.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f = Flowing pressure$ $P_s = Set pressure$ $\% \text{ OP} = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

> Read flow capacity at set pressure from table

> Calculate over-pressure

Calculate flow capacity

Example—To find "C" factor from table:

Read "C" factor for 75% Over-pressure at intersection of row 70 and column 5 "C" factor at 75% OP = 0.83

	"C" Factor Table									
%0P	0	1	2	3	4	5	6	7	8	9
10			•	••Consi	ult Facto	ory•••				
20	0.27	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40
30	0.42	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52
40	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62
50	0.63	0.64	0.65	0.66	0.67	0.67	0.68	0.69	0.70	0.71
60	0.72	0.72	0.73	0.74	0.75	0.76	0.76	0.77	0.78	0.79
70	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.85	0.86
80	0.87	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.92	0.93
90	0.94	0.94	0.95	0.96	0.96	0.97	0.97	0.98	0.99	1.00

Example—Flow Capacity Calculation	1.	
20" Model 2100	2.	
0.4 BarG Set Pressure [Ps]	3.	
0.7 BarG Flowing Pressure [P _f]	4.	

Flow = 64,900 NCMH $\% \text{ OP} = [(0.7 - 0.4)/0.4] \times 100 = 75\%$ Read "C" factor from table "C" = 0.83Flow = 0.83 x 64,900 = 53,867 NCMH

EMERGENCY PRESSURE RELIEF VALVE Model 2400A

- Sizes 16", 20" and 24"
- Pressure settings 1.5 8 oz/in²
- Vacuum settings 0.5 4 oz/in²
- Hinged with lift stop for positive reseating
- Available in carbon steel, stainless steel and other materials
- Easy access manway combined with emergency relief

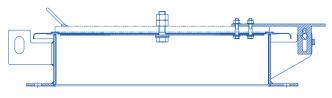
EMERGENCY PRESSURE RELIEF VALVE

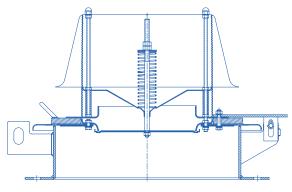
Series 2400A is designed to provide emergency relief capacity beyond that furnished by the normal operating pressure/vacuum relief of valve on the tank. The valve protects the tank against rupture or internal pressures caused by fire exposure, etc. Series 2400A is designed to be self-closing. As excessive pressure builds up, Series 2400A relieves, then reseats when over pressure has been dissipated. Counter weights are available for lower settings.

SPECIAL FEATURES

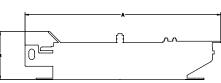
Series 2400A is built of corrosion resistant material throughout. Groth's special Teflon^{®1} "cushioned air" pallet provides integrity of seating. Model 2450A incorporates a vacuum breaker.

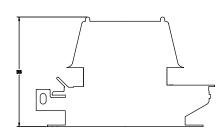
GROTH, THE CAPABILITY COMPANY


As with all Groth products, every Series 2400A is factory inspected and tested to meet your critical requirements and special needs. Inventory is maintained to insure rapid delivery.


MODEL 2450A PRESSURE/VACUUM

MODEL 2400A (PRESSURE)




MODEL 2400A

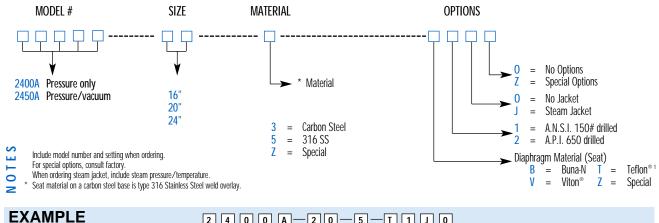
MODEL 2450A

1 Teflon is a registered trademark of DuPont Corporation.

MODEL 2400A

Specifications subject to change without notice. Certified dimensions available upon request.

Size *	Standard [†] Setting Pressure Weight Loaded	Maximum Setting Pressure Weight Loaded	A Width (mm)	B Height (At max. setting) (mm) Closed Open		Approx. Ship. Weight Lbs. (kg) (At min. setting)
16" (400 mm) 20" (500 mm) 24" (600 mm)	2.0 oz/in ² (8.6 mbar) 1.8 oz/in ² (7.8 mbar) 1.7 oz/in ² (7.3 mbar)	8 oz/in² (34.5 mbar)	23 1/2 " (597) 28 3/4 " (730) 33 1/4 " (845)	11″ (279)	20 1/2 " (521) 22 1/2 " (572) 24 1/2 " (622)	72 (33) 98 (45) 124 (56)


MODEL 2450A

	Standarc Pressure ^{***}	l Setting Vacuum	Maximum Setting Pressure▲	A Width (mm)	· ·	BB eight nm)	Approx. Ship. Weight Lbs. (kg)
Size *	Weight Loaded	Spring Loaded	Weight Loaded		Closed	Open	(At min. setting)
16" (400 mm)	2.7 oz/in ² (11.6 mbar)			23 ^{1/2} " (597)		24 ^{1/2} " (622)	79 (36)
20" (500 mm)	2.3 oz/in (9.9 mbar)	0.5 oz/in ² (2.2 mbar)	8 oz/in ² (34.5 mbar)	28 ^{3/4} " (730)	18 ^{1/2} " (470)	26" (661)	105 (48)
24" (600 mm)	2.0 oz/in (8.6 mbar)			33 ^{1/4} " (845)		27 ^{1/2} ″ (699)	130 (59)

* 150# A.N.S.I. or API 650 drilling compatibility. 1 Minimum pressure setting 1.0 oz/in² on special application. A Maximum pressure setting on 16" size = 4 oz/sq. in. Fiberglass dimensions on request. "Caution" — See IOM when mounting to API 650 flange. Max. Vacuum Setting is 4 oz./sq. in. **Minimum pressure setting 1.5 oz/in² on special application.

HOW TO ORDER

For easy ordering, select proper model numbers

2 4 0 0 A 2 0 5 T 1 J 0

indicates a 20" Model 2400A with 316 SS Material, Teflon®1 Seat Diaphragm, ANSI 150# Drilled, Steam Jacket and no other options.

¹ Teflon is a registered trademark of DuPont Corporation.

Model 2400A Emergency Pressure Relief Capacity

	ure/Vacuum Ps)	Air Flow Capac	Air Flow Capacity at 100% Over-pressure (Double Set Pressure/Vacuum) 1000 Standard Cubic Feet per Hour at 60° F						
In WC	Oz/Sq In	16" Pressure	20" Pressure	24" Pressure	All Vacuum [#]	2450 Only			
0.87	0.50				65	Use			
1.73	1.00				91	"C"			
2.60	1.50	422	668	970		Factor			
3.00	1.73	454	718	1043		Chart on			
3.46	2.00	487	771	1120	129	Page			
4.00	2.31	524	829	1204		412 for			
4.33	2.50	545	862	1252		Vacuum			
5.00	2.89	585	926	1345		Flow			
5.19	3.00	597	944	1371	157				
6.93	4.00	689	1090	1583	180				
10.4	6.00	843	1334	1937					
13.9	8.00	973	1539	2236					

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

* Other vacuum settings available on special order.

70

80

90

0.94

0.96

0.98

0.94

0.96

0.98

Flow capacity values listed above are based on full open valves at 100% over-pressure.

Vacuum flow rating applies only to Model 2450A.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative. Note: Vacuum capacity is modified using the "C" factor on page 412.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f = Flowing pressure$ $P_s = Set pressure$ $% OP = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation 1. Read flow capacity at set pressure from table 20" Model 2400A 20" Model 2400A 2. Calculate over-pressure 4 In WC Set pressure [Ps] 3. Read "C" factor from 7 In WC Flowing pressure [Pr] 4. Calculate flow capacity

%0P 0 1 2 3 4 5 6 7 0.70 10 0.71 0.71 0.72 0.72 0.73 0.73 0.74 20 0.75 0.76 0.76 0.77 0.77 0.78 0.78 0.79 30 0.80 0.81 0.81 0.82 0.82 0.83 0.83 0.84 40 0.85 0.86 0.86 0.87 0.87 0.88 0.88 0.89 50 0.90 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.92 0.93 60 0.92 0.92 0.93 0.93 0.93 0.93

0.95

0.97

0.99

0.95

0.97

0.99

0.95

0.97

0.99

0.95

0.97

0.99

0.95

0.97

0.99

d flow capacity at pressure from table	Flow = 829.000 SCFH	Туре	2400A	2450A
culate over-pressure d "C" factor from table	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Pressure	~	>
culate flow capacity	<i>Flow</i> = 0.95 x 829,000 = 787,550 SCFH	Vacuum		~

0.94

0.96

0.98

Example—To find "C" factor from table: Read "C" factor for 75% Over-pressure at intersection of row 70 and column 5 "C" factor at 75% OP = 0.95

"C" Factor Table

8

0.74

0.79

0.84

0.89

0.92

0.94

0.96

0.98

1.00

9

0.75

0.80

0.85

0.90

0.92

0.94

0.96

0.98

1.00

Model 2400A Emergency Pressure Relief Capacity

	ure/Vacuum Ps)	Air Flow Capacity at 100% Over-pressure (Double Set Pressure/Vacuum) 1000 Standard Cubic Meters per Hour at 0° C						
mm WC	mb	16" Pressure	20" Pressure	24" Pressure	All Vacuum [#]	2450 Only		
22	2.16				1.83	Use		
44	4.31				2.58	"C"		
88	8.63	13.8	21.9	31.7	3.63	Factor		
100	9.80	14.7	23.3	33.8		Chart on		
132	12.9	16.9	26.8	38.9	4.42	Page		
176	17.3	19.5	30.9	44.9	5.08	413		
200	19.6	20.8	32.9	47.8		for Vacuum		
250	24.5	23.2	36.8	53.4		Flow		
300	29.4	25.5	40.3	58.5				
351	34.3	27.5	43.5	63.2				

Flow capacity is certified by Groth Corporation, based on actual tests conducted in compliance with API Std. 2000. Flow measurement accuracy has been verified by an independent testing laboratory.

* Other vacuum settings available on special order.

Flow capacity values listed above are based on full open valves at 100% over-pressure.

Vacuum flow rating applies only to Model 2450A.

Read the flow capacity at 100% over-pressure directly from the table above. Use linear interpolation if the set pressure is not listed. (Ref: Page TPD1)

If the allowable over-pressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable over-pressure is more than 100%, consult page TPD1 or your Groth Representative. Note: Vacuum capacity is modified using the "C" factor on page 413.

Calculate the percentage over-pressure by the following formula. Note that all pressures are gage pressure expressed in the same units of measure.

 $P_f = Flowing pressure$ $P_s = Set pressure$ $\% \text{ OP} = [(P_f - P_s)/P_s] \times 100$

Calculate flow capacity at less than 100% over-pressure according to the following example.

Example—Flow Capacity Calculation	1.	Read flow capacity at	
		set pressure from table	Flow = 23,300 NCMH
20" Model 2400A	2.	Calculate over-pressure	% OP = [(175 - 100)/100]x 100 = 75%
100 mm WC Set pressure [P _s]	3.	Read "C" factor from table	"C" = 0.95
175 mm WC Flowing pressure $\left[P_{f} \right]$	4.	Calculate flow capacity	Flow = 0.95 x 23,300 = 22,135 NCN

Example—To find "C" factor from table:

Read "C" factor for 75% Over-pressure at intersection of row 70 and column 5 "C" factor at 75% OP = 0.95

	"C" Factor Table									
% O P	0	1	2	3	4	5	6	7	8	9
10	0.70	0.71	0.71	0.72	0.72	0.73	0.73	0.74	0.74	0.75
20	0.75	0.76	0.76	0.77	0.77	0.78	0.78	0.79	0.79	0.80
30	0.80	0.81	0.81	0.82	0.82	0.83	0.83	0.84	0.84	0.85
40	0.85	0.86	0.86	0.87	0.87	0.88	0.88	0.89	0.89	0.90
50	0.90	0.90	0.90	0.91	0.91	0.91	0.91	0.91	0.92	0.92
60	0.92	0.92	0.92	0.93	0.93	0.93	0.93	0.93	0.94	0.94
70	0.94	0.94	0.94	0.95	0.95	0.95	0.95	0.95	0.96	0.96
80	0.96	0.96	0.96	0.97	0.97	0.97	0.97	0.97	0.98	0.98
90	0.98	0.98	0.98	0.99	0.99	0.99	0.99	0.99	1.00	1.00

	Туре	2400A	2450A
	Pressure	>	<
СМН	Vacuum		~

EMERGENCY PRESSURE RELIEF VALVE

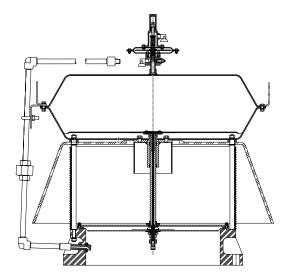
Model 2500A Pilot Operated

- Documented compliance to EPA's Method 21 testing (<500 ppm)</p>
- Derakane, Furan, Carbon Steel, 316 SS and other body materials available
- Available in Flange sizes 18" 24" (Consult factory for other sizes)
- ANSI 150# and API 650 drilling
- Full lift by 20% overpressure
- Trim available in 316 SS or Hastelloy C
- Standard FEP Diaphragm
- Pressure settings 5" W.C. to 6 PSIG

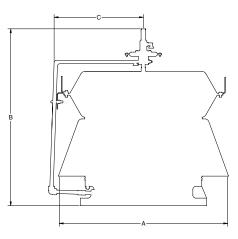
PILOT OPERATED EMERGENCY PRESSURE RELIEF VALVE

Model 2500A is designed to provide emergency relief capacity beyond that furnished by the normal operating pressure relief valve on the tank. The Valve protects the tank against rupture or explosion that could result from excessive internal pressures caused by an external fire, etc. Model 2500A is designed to be self-closing. As excessive pressure builds up, Model 2500A relieves, then reseats when overpressure has been dissipated.

SPECIAL FEATURES


Model 2500A is designed to assist in meeting the requirements of the 1990 Clean Air Act Amendments as best available control technology. Unit provides the capability to meet the leakage rate requirement of 500 ppm or less. This pilotoperated valve with large actuator is the only proven way to insure the necessary sealing force to meet the requirement. The Model 2500A is built of corrosion resistant materials throughout which allows it to be used in severe service environments, i.e. ethylene dichloride, methylene chloride.

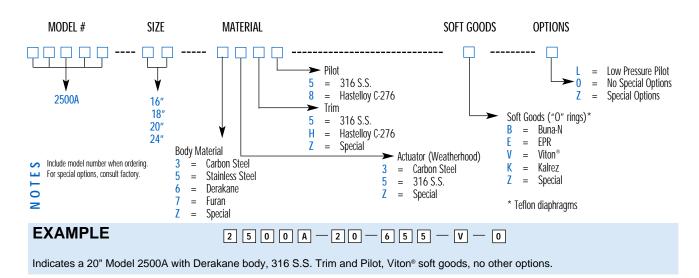
GROTH, THE CAPABILITY COMPANY


As with all Groth products, every Model 2500A is factory inspected and tested to meet your critical requirements and special needs.

MODEL 2500A

MODEL 2500A

Specifications subject to change without notice. Certified dimensions available upon request.

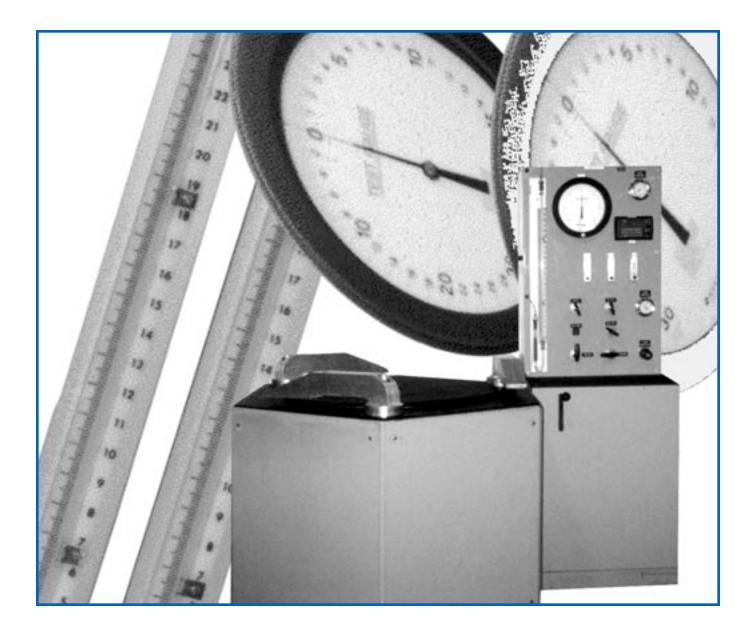

Size*	Min. Setting Pressure	Max. Setting Pressure	A Width (Metric)	C Height (Metric)	Approx. Center Line (Metric)	Ship. Wt. Lbs.
18″			36″	40″	21″	280
(457 mm)	dard) Pilot)		(914) (1016) (533)	(533)	(127 kg)	
20″	(standard) 9 ^{mbar)} [1402 Pilot) 5mbar)	PSIG 41 bar)	39″	42″	23″	350
(508 mm)	C. (1)	6 P	(991)	(1067)	(584)	(159 kg)
24″	N N		42″	44 1/2″	24″	450
(610 mm)	12° 5″		(1067)	(1130)	(610)	(204 kg)

* 150 # A.N.S.I. or API 650 drilling available. Consult factory for special settings.

** See Techincal Section (page TS4) "PILOT OPERATED VALVES - Modes of Failure".

HOW TO ORDER

For easy ordering, select proper model numbers



SECTION 5 TEST STANDS

VALVE TEST STANDS

- Pressure/Vacuum Relief Valve Test Stand
- Pilot Valve Test Stand
- Pneumatic/Hydraulic Pressure Relief Valve Test Stand - Manual or Automatic Clamping
- **Compressor and Air Receiver**

INTRODUCTION

Since 1960, the Groth name has been synonymous with the repair, manufacture or testing of valves. this vast experience lead us into the venture of manufacturing valve test equipment. Simple in design; easy to use; inexpensive to maintain, included with these principals, the standard modesl discussed in this brochure offer the user many years of trouble-free operation.

Groth can also provide the following:

- Optional digital interface, critical valve data can be captured with appropriate software
- Optional digital pressure gauges feature data logging capability and a serial interface for data downloading
- Units designed to meet your specific requirement
- Start-up assistance

The final inspection of any new or repaired valve is an actual test in accordance with approved standards and codes. To do this, you need the best available test equipment.

We welcome you to visit our Stafford, Texas facility, where will be pleased to demonstrate various models of test stands under actual conditions.

SERIES 200 TEST STANDS

Pressure / Vacuum Relief Valve

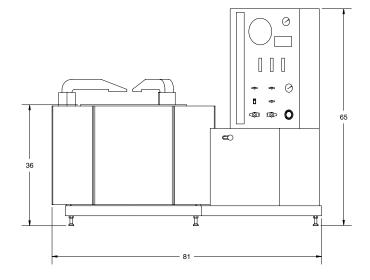
STANDARD

- Pressure/Vacuum testing
- Dial gages
- Flowmeters
- Manometers
- Pressure vessel directly under test flange for smooth regulated pressure or vacuum
- Heavy steel construction
- SS tubing
- Mounting adapters and gaskets included

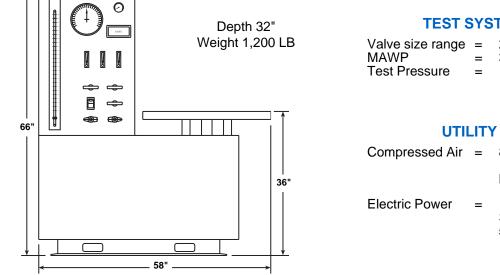
OPTIONS

- Digital Gages
- Skid Mounted

SERIES 200 TEST STANDS


The Groth Series 200 test stand contains all valves and gages necessary to accurately verify settings for both pressure and vacuum conditions. Seat leakage is monitored using flow meters ranging from 0.1 - 100 SCFH.

The Series 200 is designed to assist in meeting the requirements of the 1990 Clean Air Act Amendments.



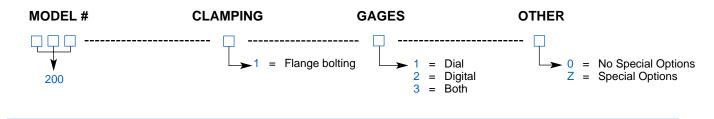
Model 200-3

Depth 43" Weight 1,600 LB

Model 200-1

TEST SYSTEM SPECIFICATION

/alve size range	=	2" - 24"
/IAWP	=	30 psig
est Pressure	=	12 PSI Vacuum to
		15 PSI Pressure


UTILITY REQUIREMENTS

Compressed Air	=	80 - 150 psig
		1/2" nominal
		line size

100/115/230 VAC Single Phase 50/60 Hz 10 Amp

HOW TO ORDER

For easy ordering, select proper model number

EXAMPLE 2 1 0 - 3 - 3 - 0

Indicates a Model 210, hydraulic clamps, digital and dial gages, and no other options.

Specifications subject to change without notice.

PILOT VALVE TEST STAND

STANDARD

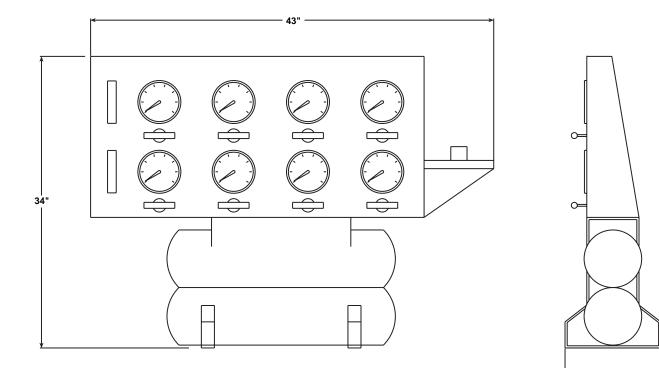
- Easy setup and installation
- 4" dial test gages
- Up to 1500 psi test pressure
- SS tubing and valves
- Moisture removal filter
- Dome simulation vessel
- Tank simulation vessel

OPTIONS

- Digital gages with precision of 0.07%
- Custom designed to meet your needs

PILOT VALVE TEST STAND

The Groth Pilot Valve Test Stand is used to set and test the pilot valve independent of the main pressure relief valve. The 1990 Clean Air Act Amendments mandate leak testing of all pressure relief valves to insure that leakage rates are within acceptable levels. The ability to perform in house pilot operated relief valve setting and testing will enable the individual plant to expedite the process and retain complete control of records.


Detailed specifications are available from Groth Products Group.

Note:

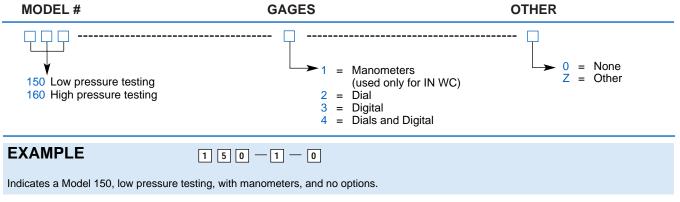
MODEL 220

Dome Simulation Vessel not shown in above picture. Contact Groth Corporation for current drawings and layouts.

TEST SYSTEM SPECIFICATION

Test Pressure — Model 150	=	2" WC - 20 PSIG
Test Pressure — Model 160	=	15 - 1500 PSIG

=


UTILITY REQUIREMENTS

Compressed Air or Nitrogen — Model 150	=	150 PSI
— Model 160	=	2000 PSI

- Electric Power (Digital Gages)
- 100/115/230 VAC Single Phase 50/60 Hz 5 Amp

HOW TO ORDER

For easy ordering, select proper model number

Specifications subject to change without notice.

SERIES 100 TEST STANDS

Pressure Relief Valve - Pneumatic / Hydraulic

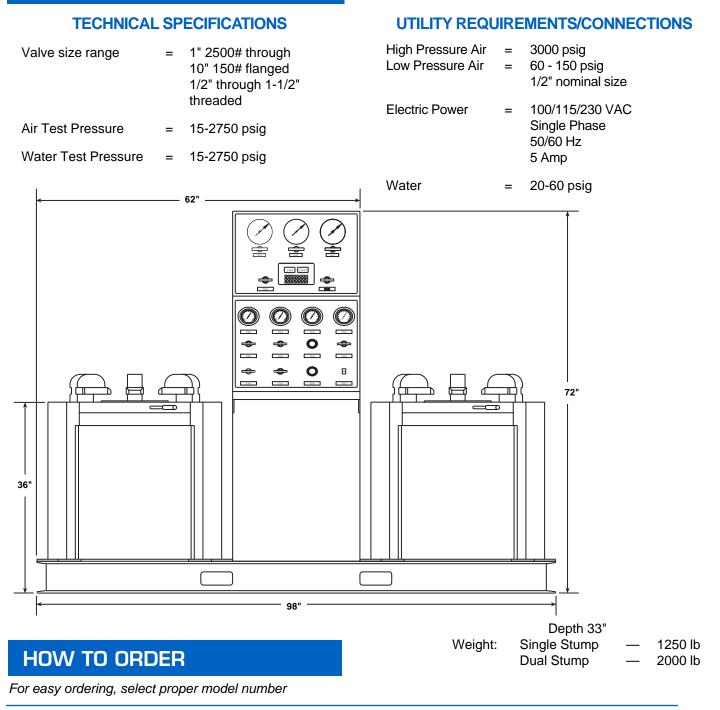
Bolt on Unit

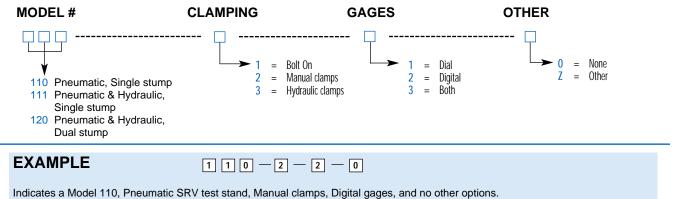
Manual or Automatic Clamping

STANDARD

- Easy setup and installation
- 6" dial test gages
- 1/2" thru 10" valve mountings
- Up to 2000 psi test pressure
- SS tubing & valves
- 360 degree accessibility

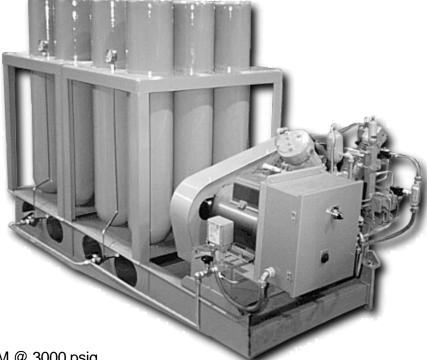
OPTIONS


- Manual or hydraulic clamping with safety interlock
- Digital gages with precision of 0.07%
- High pressure compressor and air receiver
- Skid mounted


SERIES 100 — PRESSURE RELIEF VALVE TEST STAND

All Groth pressure relief valve test stands combine extremely high accuracy with maximum productivity in testing and determining set pressure.

Groth provides various options to meet your testing needs. Mounting of valves is quick and safe with either flange bolting, manual or automatic clamping. The test stands have easy to read dial or digital pressure gauges.


Test stand construction is robust and is based on almost forty years of relief valve assembly and testing.

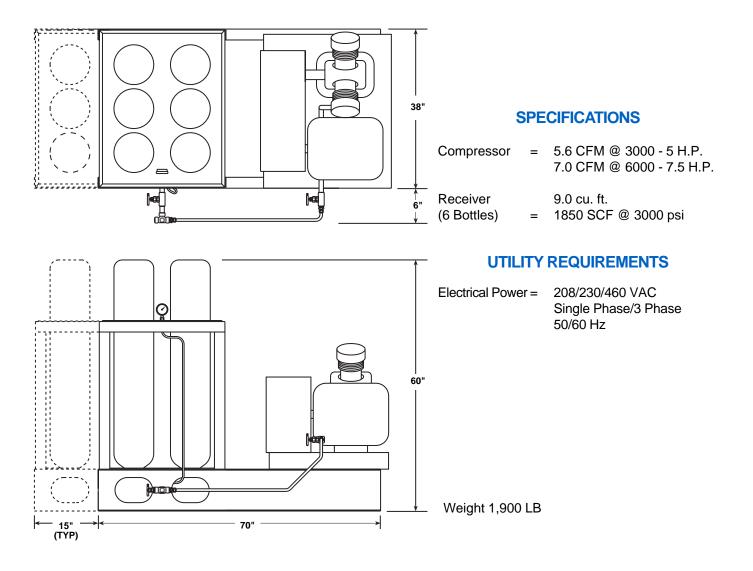
Specifications subject to change without notice.

COMPRESSOR and AIR RECEIVER

STANDARD

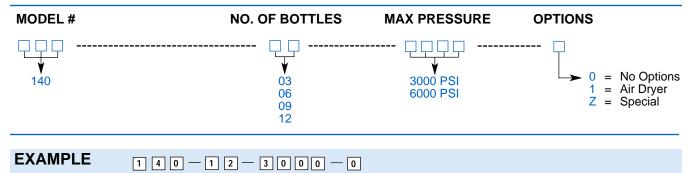
- Compressor generates 5 CFM @ 3000 psig
- 5 hp, TEFC motor
- Nema 4 A.T.L. motor starter
- Automatic On/Off pressure switch
- Low oil level switch
- Automatic condensate drain

COMPRESSOR AND AIR RECEIVER


Groth's test stands are designed for high and low pressure testing. Upon request, Groth can furnish a compressor system for your testing needs. All components and adapters are included. Standard compressors and air receivers will test valves up to 2000 psig.

SPECIAL FEATURES

All Compressor units are completely self contained. Each unit is designed to provide a substantial volume of high pressure air when needed. This eliminates the long waiting period if a low volume compressor supplies air directly to the valve test stand.


Model 140

Note: Compressor and Bottle Rack can be modified to meet your specific needs (i.e. higher pressures). Contact Groth for additional information including dimensions and layouts.

HOW TO ORDER

For easy ordering, select proper model number

Indicates a compressor with 12 bottles and a maximum pressure of 3000 psi. (as shown in picture on front)

Specifications subject to change without notice.

Innovative **Global** Solutions for Low Pressure Systems Protection

13650 N. Promenade Blvd. Stafford, Texas 77477

tel (281) 295-6800 fax (281) 295-6999

www.grothcorp.com

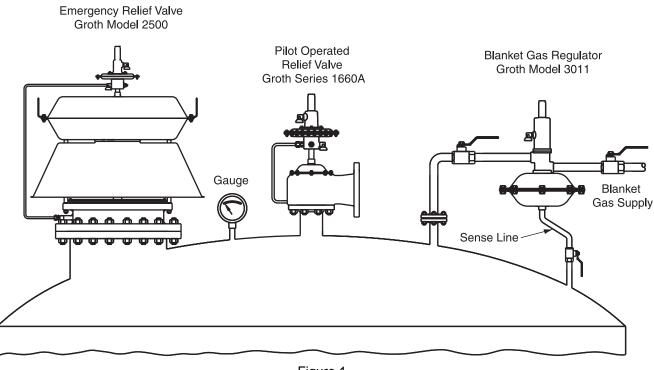
SECTION 6

PILOT OPERATED RELIEF VALVES

- Series 1660A Pilot Operated Valves
 - Series 1400 Pilot Operated Valves •
- Series 1500 Pilot Operated Valves •

PILOT OPERATED RELIEF VALVE SERIES 1660A

Model 1660A U.S. Patent No. 5,499,648


Model 1401E U.S. Patent No. 5,163,471

Model 1402 U.S. Patent No. 5,992,449

Premium seat tightness to set pressure

Snap or modulating valve action

Provides ability to meet "Clean Air Act" requirements

Typical Tank Installation

Figure 1

Pressure and/or vacuum relief valves are used on liquid storage tanks and other process vessels or systems to prevent structural damage due to excess internal pressure or vacuum.

Storage tanks are pressurized when liquid is pumped in and compresses the existing vapor or when increasing temperature causes increased evaporation or expansion of existing vapor. Conversely, vacuum may be created when pumping out or decreasing temperature. To prevent damage, vapor must be allowed to escape or enter the tank at a specified pressure or vacuum. The volume rate of venting depends upon the tank size, volatility of the contents, the pumping rate and the temperature. See API Standard 2000 for the procedures to determine venting requirements.

The pilot operated relief valve has two principal advantages over other types of relief valves:

- 1) It is bubble tight to set pressure.
- 2) It is fully open at less than 10% above set pressure.

These characteristics permit an operating pressure nearer to the maximum allowable working pressure of the tank. High operating pressures reduce evaporation and total venting volume, thereby reducing product loss and cost of processing emissions.

A tank may also have provisions for emergency pressure relief due to fire exposure and/or an inert gas blanket in the vapor space. A typical tank installation is shown in Figure 1 which includes a pilot operated pressure/vacuum relief valve, a gas blanketing regulator and a pilot operated emergency pressure relief valve.

The Groth Series 1660A Pilot Operated Valve is available in the following configurations:

	RELIEF SERVICE		
	PRESSURE	VACUUM	
1660A	~		
1661A	~	CIRECT ACTUATED	
1662A			
1663A	~		

FEATURES

- Sizes 2" through 12"
- Full Pipe Bore Seat Nozzle
- Standard Pressure Settings from 2.0" W.C. to 15 PSIG
- Temperature Range from -323° F to 300° F
- Designed for Easy Maintenance
- Minimal Spare Parts Requirements

- Inherent Backflow Prevention
- ISO 9001 Certified Manufacturing Process
- Easily Adjustable Blowdown
- Snap Action or Modulating Pilot
- Premium Seat Tightness to Set Pressure.
- Standard Body Materials are Aluminum, Carbon Steel, or 316 S.S.
- Film seat design meets EPA Method 21

APPLICATIONS

LOW PRESSURE STORAGE TANKS

The Groth Model 1660A Pilot Operated Valves can meet seat tightness requirements of environmental regulations, even when the operating pressure is close to the set pressure, such as when gas blanketing is used.

CRYOGENIC STORAGE TANKS

Leaking pressure relief valves on low temperature tanks cause unsafe freezeups. Tight pilot operated valves with snap action are the safest devices known. Modulating valves must not be used on cryogenic service.

NATURAL GAS

Some natural gas production facilities require large volume relief capacities at low pressures and pilot operated valves are ideal for these applications. When the relief valve is installed downstream of a pressure reducing valve, the modulating mode can prevent destructive interaction between the two valves.

AIR SEPARATION PLANTS

Pilot operated valves prevent the accidental loss of gases when used in both low pressure process and storage applications.

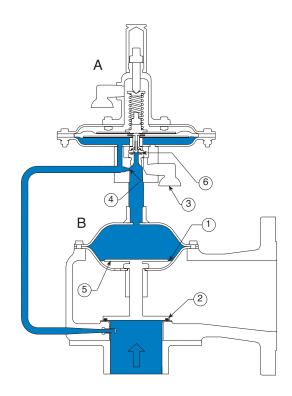
AIR BLOWERS

Air blowers for conveyor systems and waste water treatment plants, as well as other uses, often require accurate relief for both pressure and vacuum. Pilot operated relief valves—both pressure valves and vacuum valves—are extremely well suited for such services.

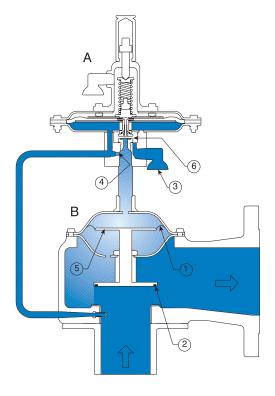
Model 1660A - Pressure Relief -Pilot Actuated

The function of the pilot valve (A) is to control pressure in the main valve actuator (B) or upper dome of the main valve. The effective area of the actuator diaphragm (1) is significantly larger than the pallet seat area (2). Tank pressure is applied both on top of the actuator diaphragm and below the main valve seat area. Because of the area ratio, the downward force is greater than the opening force and results in a tight main valve seat.

When tank pressure reaches set pressure, the force acting upward on the pilot valve sense diaphragm overcomes the downward spring force. The pilot valve begins to flow through the seat (6) to the breather port (3). This flow results in a pressure drop in the upper dome (B). As a result, pressure acting under the main valve pallet will open the valve and relieve the over-pressure condition.


Adjustment of the blowdown needle (4) can provide either "snap action" or "modulating" pilot valve operation. For snap-action operation, the main valve pallet lifts quickly to full open. In modulating service, the pallet will lift sufficiently to maintain set pressure regardless of the flow rate up to the rated capacity of the valve at the specified set pressure.

The main valve remains open (and flowing) as long as the tank pressure is higher than the pilot valve set pressure.


As tank pressure decreases to the pilot valve reseat pressure, the pilot valve closes allowing tank vapors to flow back into the upper dome (B). As the upper dome pressure rises, the pallet assembly is tightly closed against the seat.

The adjustable orifice or blowdown needle (4) affects the closing of the pilot valve. Blowdown can vary from zero for modulating operation to 10% for snap-action operation.

NOTE: The actuator diaphragm (1) is not attached to the support plate (5) unless vacuum relief or Low set 1402 pilot is specified. This design provides "**inherent back-flow prevention**" when the discharge header pressure exceeds tank pressure. No additional hardware is required for this protection.

Closed Condition

Open Condition

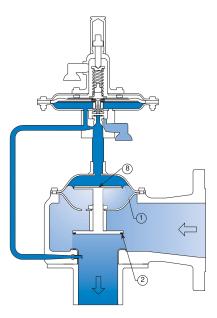
Model 1661A -Pressure Relief - Pilot Actuated Vacuum Relief - Direct Actuated

Vacuum relief is provided by attachment of the actuator diaphragm to the pallet/support plate assembly. This provides pressure and vacuum protection with a single main valve and a single pilot valve.

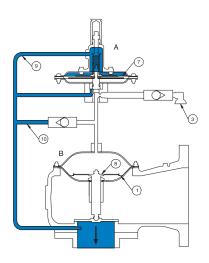
The valve opens when the tank vacuum acting on the actuator diaphragm overcomes the weight of the pallet assembly. The vacuum applied to the area differential between the actuator diaphragm (1) and the pallet seat area (2) provides the lifting force. The vacuum cracking pressure is approximately 1.0 - 2.0" WC, and is determined by the weight of the pallet assembly and related components. Full open flow is achieved in the 1.7" to 3.5" WC range, depending on valve size, pressure setting and materials of construction. The diaphragm is attached by the upper support plate (8), so backflow prevention is not provided by this valve.

Model 1662A - Vacuum Relief -Pilot Valve Actuated

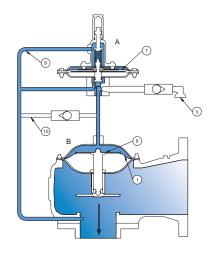
Operation of a Pilot Actuated Vacuum Relief Valve is similar to pressure relief except for the physical connections between the pilot and main valve. The vacuum sense lines (9 & 10) connect the spring chamber breather port and the pilot valve exhaust port to the main valve total pressure pickup as shown.


Atmospheric pressure is applied under the boost and sense diaphragms and in the upper dome (B) through the breather port (3). Below set vacuum the spring force is greater than the lift created by tank vacuum above the sense diaphragm (7) so both the pilot valve and the main valve will remain closed.

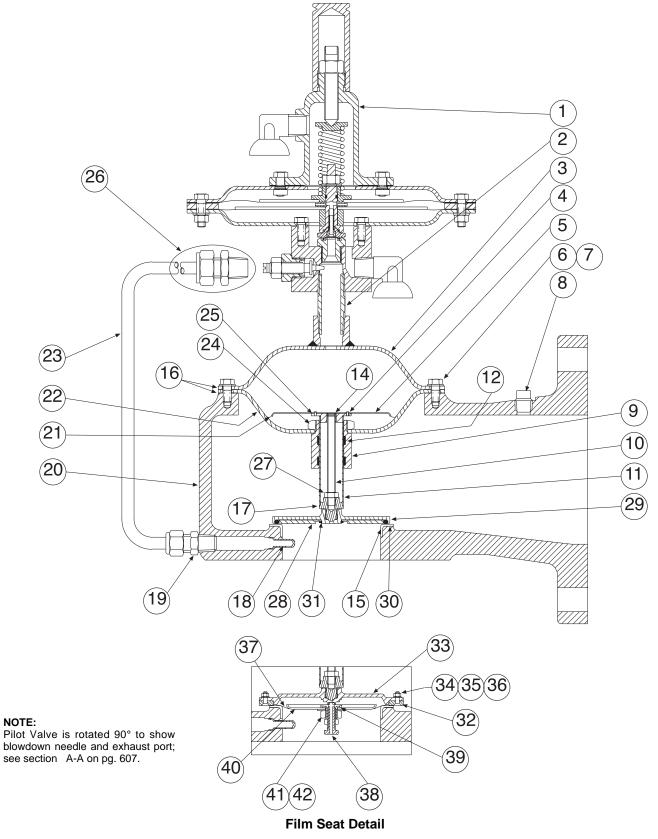
At set vacuum the pilot valve opens and the upper dome is reduced to tank vacuum. The diaphragm is attached by a second actuator support plate (8) for vacuum operated valves. Main valve internal pressure under the actuator diaphragm (1) opens the main valve. The valve remains open and flowing until the system reaches the pilot valve reseat pressure.


NOTE: Backflow pressure relief prevention is provided for pilot operated vacuum relief valves in case positive system pressure can occur. A bypass line with a check valve is used to apply pressure to the upper dome. Another check valve prevents pressure discharge from the pilot vent.

CAUTION:


See Technical Section TPD3 for Modes of Failure.

Open Condition—Direct Actuated


Closed Condition

Open Condition

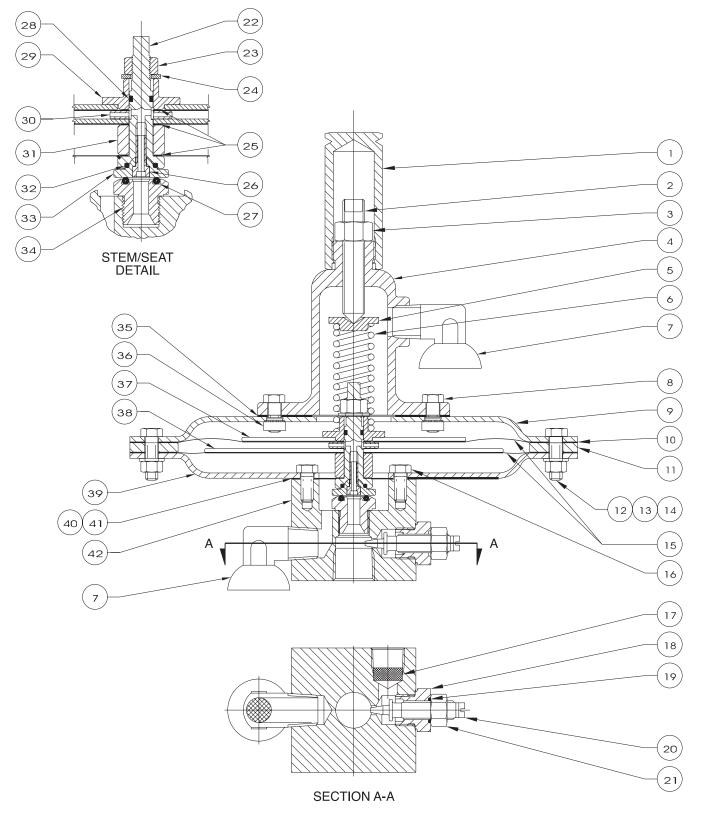
ASSEMBLY

Model 1660A Pilot Operated Relief Valve

U.S. PATENT NO. 5,499,648

Model 1660 Pilot Operated Relief Valve

		Materia	als of Const	truction
Item	Description	Aluminum	Carbon	Stainless
	•		Steel	Steel
1	Pilot	SS	SS	SS
2	Nipple, Pipe	316 SS	316 SS	316 SS
3	Housing, Upper Actuator	AL	CS	316 SS
4	Rivet	SS	SS	SS
5	Plate, Diaphragm	AL	316 SS	316 SS
6	Bolt, Hex	316 SS	316 SS	316 SS
7	Washer, Lock	316 SS	316 SS	316 SS
8	Plug, Pipe	316 SS	316 SS	316 SS
9	Guide, Spindle	AL	316 SS	316 SS
10	Rod, Spindle	316 SS	316 SS	316 SS
11	Spindle	316 SS	316 SS	316 SS
12	Bearing, Spindle	PTFE	PTFE	PTFE
13	Stud/Nut (not shown)	316 SS	316 SS	316 SS
14	Insert, Locking	316 SS	316 SS	316 SS
15	Seat, Body	See Note 3	316 SS	See Note 3
16	Gasket, Actuator	Teflon [®] FEP ⁴	Teflon [®] FEP ^₄	Teflon [®] FEP ^₄
17	Cap Spindle, Lower	AL	316 SS	316 SS
18	Pickup, Pressure	316 SS	316 SS	316 SS
19	Tube Connector	316 SS	316 SS	316 SS
20	Body	AL	CS	CF8M (316 SS)
21	Diaphragm, Actuator	Teflon [®] FEP ^₄	Teflon [®] FEP ^₄	Teflon [®] FEP ^₄
22	Housing, Lower Actuator	AL	CS	316 SS
23	Tubing	316 SS	316 SS	316 SS
24	Nut, Hex Jam	316 SS	316 SS	316 SS
25	Cap, Spindle-Upper	AL	316 SS	316 SS
26	Connector, Tube	316 SS	316 SS	316 SS
27	Nut, Hex Jam	316 SS	316 SS	316 SS
28	Retainer Plate, O-Ring	AL	316 SS	316SS
29	Pallet, O-Ring	AL	316 SS	316 SS
30	O-Ring	See Note 1	See Note 1	See Note 1
31	Retainer, Snap Ring	SS	SS	SS


	FILM SEAT COMPONEN	NTS (ITEMS 1-27 ARE	SAME AS ABO	OVE)
32	Ring, Film Seat	AL	316 SS	316 SS
33	Plate, Film Seat	AL	316 SS	316 SS
34	Screw, Hex Skt Flt Hd	SS	SS	SS
35	Nut, Hex	SS	SS	SS
36	Washer, Lock	SS	SS	SS
37	Seat, Film	Teflon [®] FEP ^₄	Teflon [®] FEP ^₄	Teflon [®] FEP ^₄
38	Jackscrew	316 SS	316 SS	316 SS
39	Bushing, Jackscrew	316 SS	316 SS	316 SS
40	Retainer, Film Seat	AL	316 SS	316 SS
41	Nut, Hex Jam	316 SS	316 SS	316 SS
42	Washer, Flat	316 SS	316 SS	316 SS

Elastomer material options are specified by the soft goods option in the part number; refer to the "How to Order Section" on page 615 of this catalog.
 Consult factory for material options not listed above.

3. 316 SS Seat Insert Optional.
 Teflon is a registered trademark of DuPont Corporation.

ASSEMBLY

Model 1401E Pilot Valve

U.S. PATENT NO. 5,163,471

Model 1401E Pilot Valve

ltem	Description	Qty.	Materials of Construction All 316 SS
1	Cap, Adjustment Screw	1	316 SS
2	Screw, Adjustment	1	316 SS
3	Nut, Hex	1	316 SS
4	Bonnet, Spring	1	316 SS
5	Button, Spring	1	316 SS
6	Spring	1	316 SS (Note 2)
7	Vent, Breather	2	Plastic
8	Bolt, Hex	4	316 SS
9	Case, Diaphragm-Upper	1	316 SS
10	Gasket, Actuator	1	Teflon® FEP ⁴
11 12	Spacer, Actuator Housing	1 12	316 SS
12	Bolt Hex Nut, Hex	12	316 SS 316 SS
14	Washer, Lock	12	316 SS
15	Diaphragm, Actuator	1	Teflon [®] FEP ^₄
16	Bolt, Hex	8	316 SS
17	Screen, Filter	1	316 SS
18	Bushing, Blowdown	1	316 SS
19	O-Ring	1	PTFE
20	Needle, Blowdown	1	316 SS
21	Nut, Hex Jam	1	316 SS
22	Stem	1	316 SS
23	Nut, Hex	1	316 SS
24	Washer, Lock	1	316 SS
25	Washer	1	Teflon [®] FEP ^₄
26	Screw, Stem	1	316 SS
27	O-Ring	1	Note 1
28	O-Ring	1	Note 1
29	Guide, Spring	1	316 SS
30	Spacer, Central	1	316 SS
31	Spacer, Lower	1	316 SS
32	O-Ring	1	Note 1
33	Disc, Stem	1	316 SS
34 35	Bushing, Seat	1	316 SS Note 1
35	Gasket, Spring Bonnet Nut, Swage	1 4	304 SS
37	Plate, Support-Upper	4	316 SS
38	Plate, Support-Lower	1	316 SS
39	Case, Diaphragm-Lower	1	316 SS
40	Diaphragm, Body	1	Teflon [®] FEP ⁴
41	Gasket, Body	1	Teflon® FEP ⁴
42	Body	1	316 SS

Elastomer material options for the pilot valve(s) are specified by the soft goods designation in the "How to Order Section" section on page 615 of this catalog. 17-7 PH SS or Chrome Vanadium for Set Pressure greater than 8 PSI. Consult factory for material options not listed above. Teflon is a registered trademark of DuPont Corporation 1.

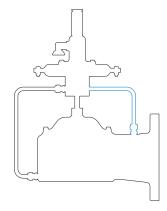
2. 3. 4.

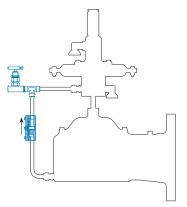
The following options are frequently utilized to reduce vapor emissions, improve serviceability or expand the capabilities of a pilot operated relief valve.

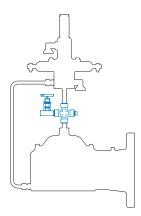
Pilot exhaust piped to discharge header

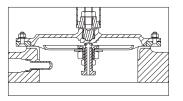
The exhaust port of the pilot valve may be piped to the outlet body to avoid any vapor emission to the atmosphere.

A 1/2" NPT(F) connection, block valve and check valve is provided for field testing the pilot valve pressure setting. This is accomplished with an independent pressure source; the check valve prevents back flow into the tank during testing.

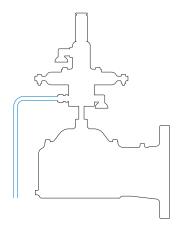

Note: Field test connection shown is for a pressure relief valve. Field test connections for vacuum and pressure/vacuum relief are also available.

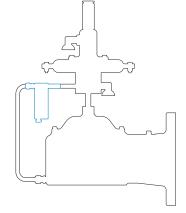

Manual Blowdown


A manually controlled block valve is provided to allow the upper dome pressure to be bled to atmosphere or a process vapor discharge system. If the tank is pressurized, releasing the dome pressure will open the main valve. An electric solenoid valve can be provided for remote blowdown control.


Conical Film Seat

To provide maximum tight shut-off, a patented "Conical Film Seat" is available with Groth Pilot Operated Valves. This unique design will avoid fugitive emissions and will exceed the requirements of "Method 21" in the EPA Regulation, CFR 40, Part 60.

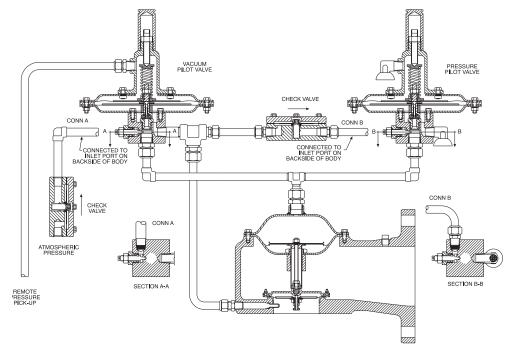



Remote Sense

Normally Pilot Operated Relief Valves have a total pressure pickup in the main valve inlet. For applications where inlet piping losses are significant, a remote sense connection will assure that the main valve will open fully at the specified pressure regardless of inlet piping pressure loss. Note that the valve sizing must take into account the reduced flow because of the inlet pressure drop. Remote sense is recommended for applications that have entrained particulates. (Tubing/Fittings provided by others.)

Pilot Supply Filter

An auxiliary filter for the pilot supply line is recommended for services with an unusual amount of foreign particulates. The standard filter is equipped with a 35 micron stainless steel screen that can be easily cleaned.


Model 1900 Check Valve

The 1900 Check Valve can also be used in non-relief valve applications such as for corrosive service or low cracking pressure.

- 316 SS Body, Cover and Fasteners
- 0.25" WC Cracking Pressure
- Teflon[®] FEP ¹ film & Viton[®] or Kalrez[®] O-Ring
- 1/4" NPT(F) Connections (straight through body)

Model 1663A Dual Pilot Operated Pressure and Vacuum Relief Valve

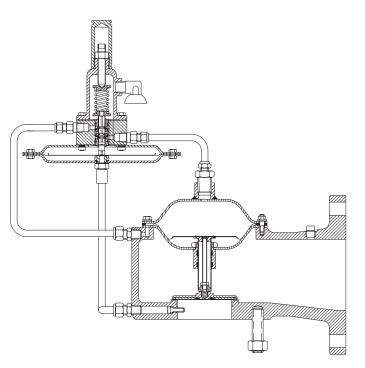
The Model 1663A will be required for pilot operated pressure and vacuum relief when the vacuum setting is greater than the direct actuated vacuum setting of the Model 1661. Minimum vacuum setting for Model 1663A is 3" W.C. and rated capacity is achieved at 10% over-pressure.

Dual pilot valves allow a single relief valve to provide independent settings for pressure and vacuum. Two Groth Model 1900 Check Valves provide isolation of the pressure and vacuum functions. The valve is closed within the set pressure range specified and opens above the positive pressure setting and below the vacuum setting. Backflow prevention protection is not available if the discharge header pressure exceeds tank pressure.

Model 1660A Series Cryogenic Services

- Tested and proven reliable below minus 300° F.
- Snap action at lowest temperatures.
- Tight shut-off with patented conical film seat
- No freeze-up for safe operation.
- All Teflon^{®1} diaphragms

The Groth Series 1660A pilot operated valves are designed to provide the safest and most reliable operation for Cryogenic service. With the incorporation of a Teflon[®] FEP¹ diaphragm and aluminum or 316 SS seat materials, the low temperature does not effect valve operation or valve seat tightness. Tight shut-off and dependable service is assured.



The Model 1402 Pilot Valve lowers the effective pressure range of all Groth Pilot Operated Valves to 2.0" WC (depending on valve model, size and materials of construction).

The Model 1402 pilot valve functions as a 4-way valve and the main valve is supplied with a double acting actuator. Below set pressure, the pilot uses tank pressure to pressurize the upper chamber of the actuator and vents the lower chamber. At set pressure, the pilot exhausts the upper chamber and pressurizes the lower chamber, applying sufficient upward force to overcome the weight of the valve stem assembly.

The action is modulating and non-flowing (the pilot only emits vapors while the main valve actuator is being exhausted).

The pilot valve pressure setting is adjustable throughout the range of 2.0" to 8.0" WC. It is used for pressure relief only and is available with all applicable materials and options shown on pages 608-610. Model 1402 Low Set Pilot Operated Relief Valve

*Patent Protected

TECHNICAL DATA

MATERIAL OPTION	ALUMINUM	CARBON STEEL	STAINLESS STEEL
Sizes	2" - 12"	2" - 12"	2" - 12"
Pressure Settings	*2" WC to 15 PSIG	**2" WC to 15 PSIG	**2" WC to 15 PSIG
	5.0 mb to 1.0 BarG	5.0 mb to 1.0 BarG	5.0 mb to 1.0 BarG
Vacuum Settings	***3" WC to 12 PSIG	***3" WC to 12 PSIG	***3" WC to 12 PSIG
	7.5 mb to 0.83 BarG	7.5 mb to 0.83 BarG	7.5 mb to 0.83 BarG
Temperature Limits	- 323°F to 300°F	-20°F to 300°F	- 323°F to 300°F
	- 197°C to 150°C	-29°C to 150°C	-197°C to 150°C

Model 1402 pilot required for settings less than 3" WC [7.5 mb].

** Model 1402 pilot required for settings less than 7" WC [17.2 mb].

*** Direct acting vacuum [Model 1661A] achieves rated capacity at 3.5" WC (8.6 mb)

Model 1660A, 1661A, 1663A Pilot Operated Valve Pressure Relief Capacity

	essure ° _s)	Air Flow Capacity at 10% Over-pressure 1000 Standard Cubic Feet per Hour at 60° F						
In WC	Oz/Sq In	2"	3"	4"	6"	8"	10"	12"
2.00	1.16	5.46	12.0	20.9	46.8	81.9	129	185
4.00	2.31	7.73	17.1	29.5	66.3	116	182	262
6.00	3.47	9.48	20.9	36.2	81.3	142	223	322
8.00	4.62	11.0	24.2	41.9	94.0	165	258	372
10.00	5.78	12.3	27.1	46.9	105	184	289	417
15.00	8.66	15.1	33.3	57.7	129	227	356	512
20.00	11.6	17.5	38.6	66.8	150	262	412	594
25.00	14.4	19.6	43.3	75.0	168	294	462	666
PS	IG							
1		20.7	45.7	79.0	177	311	488	702
2	2	29.8	65.8	114	255	447	702	1011
3	3	37.1	81.9	142	318	557	875	1260
4	1	43.6	96.1	166	373	654	1027	1478
5	5	49.4	109	189	424	742	1165	1677
6		54.9	121	210	471	824	1294	1863
8	3	65.1	144	248	557	976	1533	2207
1	-	74.4	164	284	638	1117	1754	2525
1:		83.2	184	318	713	1249	1961	2825
1-	-	91.6	202	350	785	1375	2159	3109
1	5	95.7	211	366	820	1436	2255	3247

Model 1662A, 1663A Pilot Operated Valve Vacuum Relief Capacity

	acuum °s ⁾	Air Flow Capacity at 10% Over-vacuum 1000 Standard Cubic Feet per Hour at 60° F						
In WC	Oz/Sq In	2"	3"	4"	6"	8"	10"	12"
3.00	1.73	6.66	14.7	25.5	57.1	100	157	226
4.00	2.31	7.69	17.0	29.4	65.9	115	181	261
6.00	3.47	9.41	20.8	35.9	80.6	141	222	319
8.00	4.62	10.8	23.9	41.4	93.0	163	256	368
10.00	5.78	12.1	26.7	46.3	104	182	285	411
12.00	6.93	13.3	29.2	50.6	114	199	312	450
16.00	9.27	15.3	33.7	58.3	131	229	360	518
20.00	11.6	17.0	37.6	65.0	146	255	401	578
25.00	14.4	19.0	41.9	72.5	163	285	447	644
P	SIG							
	1	19.9	44.0	76.1	171	299	470	676
	2	27.7	61.0	106	237	415	652	938
	3	33.2	73.2	127	284	498	781	1125
	4	37.4	82.5	143	320	561	881	1268
	5	40.7	89.8	155	349	610	959	1380
	6	43.2	95.3	165	370	648	1018	1466
	7	45.0	99.3	172	386	675	1060	1527

Model 1661A Direct Actuated Valve Vacuum Relief Capacity

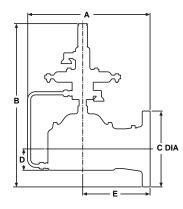
	Air Flow Capacity at 3.5" WC (2 oz/in ²) vacuum 1000 Standard Cubic Feet per Hour at 60° F					
2"	2 " 3 " 4 " 6 " 8 " 10 " 12 "					
6.82	15.1	26.1	58.5	102	161	232

Actual setting depends on size, material and pallet type and varies from 1.0 - 2.0" WC

Model 1660A, 1661A, 1663A Pilot Operated Valve Pressure Relief Capacity

	essure 's ⁾	Air Flow Capacity at 10% Over-pressure 1000 Normal Cubic Meters per Hour at 0° C						
mm WC	mb	2"	3"	4"	6"	8"	10"	12"
50	4.90	0.16	0.35	0.60	1.34	2.35	3.69	5.31
100	9.80	0.22	0.49	0.85	1.90	3.33	5.22	7.52
150	14.7	0.27	0.60	1.04	2.33	4.08	6.41	9.23
200	19.6	0.31	0.69	1.20	2.69	4.72	7.41	10.7
300	29.4	0.42	0.93	1.61	3.62	6.34	9.95	14.3
400	39.2	0.46	1.02	1.76	3.95	6.93	10.9	15.7
500	49.0	0.50	1.11	1.92	4.30	7.52	11.8	17.0
600	58.8	0.54	1.19	2.06	4.63	8.10	12.7	18.3
Bar	rg							
0.0)7	0.61	1.35	2.34	5.24	9.18	14.4	20.8
0.1	10	0.63	1.39	2.40	5.39	9.44	14.8	21.4
0.2	20	1.05	2.31	3.99	8.96	15.7	24.6	35.5
0.3	30	1.38	3.04	5.27	11.8	20.7	32.5	46.8
0.4	40	1.67	3.68	6.38	14.3	25.1	39.4	56.7
0.5	50	1.93	4.26	7.38	16.6	29.0	45.5	65.6
0.6	50	2.06	4.55	7.87	17.7	30.9	48.6	69.9
0.7	70	2.20	4.85	8.40	18.8	33.0	51.8	74.6
0.8	30	2.34	5.17	8.95	20.1	35.2	55.2	79.5
0.9	90	2.49	5.49	9.50	21.3	37.3	58.6	84.4
1.0	00	2.69	5.94	10.3	23.1	40.4	63.5	91.4

Model 1662A, 1663A Pilot Operated Valve Vacuum Relief Capacity

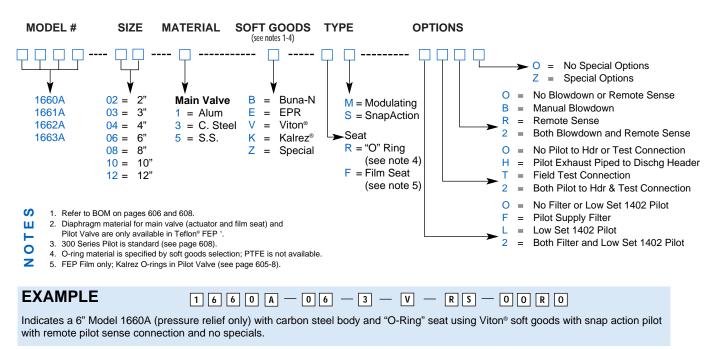

	acuum 's ⁾	Air Flow Capacity at 10% Over-vacuum 1000 Normal Cubic Meters per Hour at 0° C						
mm WC	mb	2"	3"	4"	6"	8"	10"	12"
75	7.35	0.19	0.42	0.74	1.65	2.89	4.54	6.53
100	9.80	0.22	0.49	0.85	1.90	3.33	5.24	7.54
150	14.70	0.27	0.60	1.04	2.33	4.08	6.40	9.22
200	19.6	0.31	0.69	1.20	2.69	4.70	7.39	10.6
250	24.5	0.35	0.77	1.34	3.00	5.25	8.25	11.9
300	29.4	0.38	0.84	1.46	3.28	5.75	9.02	13.0
400	39.2	0.44	0.97	1.68	3.78	6.62	10.4	15.0
500	49.0	0.49	1.09	1.88	4.21	7.38	11.6	16.7
600	58.8	0.54	1.19	2.05	4.61	8.07	12.7	18.2
Ba	ar g							
0.	.07	0.58	1.29	2.23	5.01	8.77	13.8	19.8
0.	.10	0.69	1.53	2.65	5.94	10.4	16.3	23.5
0.	15	0.84	1.85	3.20	7.17	12.6	19.7	28.4
0.	20	0.95	2.10	3.63	8.15	14.3	22.4	32.3
0.	30	1.12	2.48	4.30	9.64	16.9	26.5	38.2
0.	40	1.24	2.75	4.75	10.7	18.7	29.3	42.2
0.	50	1.32	2.91	5.04	11.3	19.8	31.1	44.8

Model 1661A Direct Actuated Valve Vacuum Relief Capacity

Air Flow Capacity at 50 mm WC (5.0 mb) vacuum 1000 Normal Cubic Meters per Hour at 0° C						
2"	3"	4"	6"	8"	10"	12"
0.20	0.44	0.76	1.70	2.98	4.68	6.75

Actual setting depends on size, material and pallet type and varies from 1.0 - 2.0" WC $\,$

SPECIFICATIONS



Specifications subject to change without notice. Certified dimensions available upon request.

							APPROX. SHIP WT.
SI	ZE	А	В	С	D	Е	(Aluminum)
INLET	OUTLET	(mm)	(mm)	(mm)	(mm)	(mm)	Lbs (kg)
2"	3"	11.75"	19.75"	7.50 "	2.75"	6.00"	30
(50 mm)	(80 mm)	(298)	(502)	(190)	(70)	(152)	(14)
3"	4"	14.75"	21.50"	9.00"	2.53"	8.00"	45
(80 mm)	(100 mm)	(375)	(546)	(229)	(64)	(203)	(20)
4"	6"	18.00"	21.75"	11.00"	4.00"	10.00"	56
(100 mm)	(150 mm)	(457)	(552)	(279)	(102)	(254)	(25)
6"	8"	21.25"	26.00"	13.50"	4.32"	12.00"	80
(150 mm)	(200 mm)	(540)	(660)	(343)	(110)	(305)	(36)
8"	10"	25.50"	28.00"	16.00"	5.31"	14.00"	130
(200 mm)	(250 mm)	(648)	(711)	(406)	(135)	(356)	(59)
10"	12"	31.75"	31.50"	19.00"	6.65"	18.00"	170
(250 mm)	(300 mm)	(806)	(800)	(483)	(169)	(457)	(77)
12"	16"	36.50"	35.00"	23.50"	8.00"	20.10"	230
(300 mm)	(400 mm)	⁽⁹²⁷⁾	(889)	(597)	(203)	(510)	(104)

HOW TO ORDER

For easy ordering, select proper model numbers

¹ Teflon is a registered trademark of DuPont Corporation.

PILOT OPERATED VALVES

GROTH CORPORATION a Continental Disc Company

SERIES 1400

Patent Protected

Pilot operated valves are used to replace weight loaded or spring loaded valves in many applications to increase efficiency and reduce evaporation losses. Several advantages are obtained over the traditional type. For example, the process pressures may be closer to the set pressure than would be considered prudent and safe with the traditional valve. Additionally, greater conservation is obtained due to minimum product loss which in turn provides increased profits.

The Groth 1400 Series valves provide safe, dependable and accurate low pressure and/or vacuum protection. Full flow is attained at no more than 10% over-pressure. This reduces the need for a large over-pressure and saves product, which translates into profit. Blowdown may be adjusted to requirements between 0 and 10% of set pressure. The Models 1400 and 1420 incorporate a vacuum breaker.

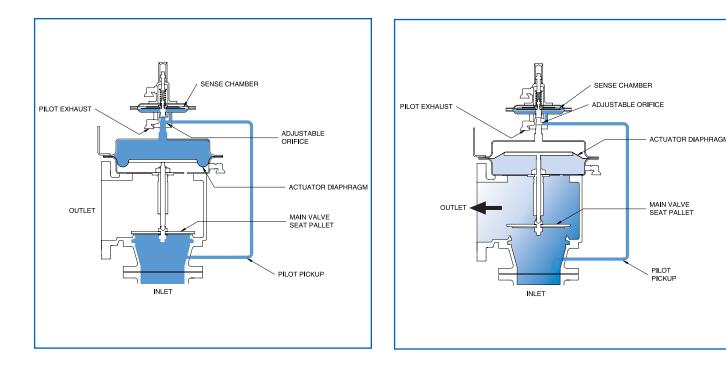
GROTH, THE CAPABILITY COMPANY

Groth manufactures a complete line of tank protection equipment and is the number one company in this field. As with all Groth products, every 1400 Series valve is factory inspected and tested to meet your critical requirements and special needs. Inventory is maintained to insure rapid delivery.

Model 1400

Model 1420

Model 1430



Model 1460

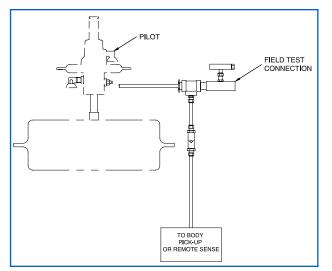
MODEL 1400 SERIES Pilot operated valves for atmospheric and low pressure storage tanks

FEATURES	BENEFITS
PILOT OPERATED	 Ease of precision settings. Only the pilot needs to be set. Lower profile and weight than spring operated models for high settings. Remote pilot sensing option allows the pilot to sense the true system pressure. Remote or manual blowdown available.
EXTRA TIGHT SEAL	 Main valve remains tight to set pressure.
FULL FLOW	Full open at less than 10% overpressure.
SNAP ACTION OR MODULATING ACTION	 Modulating action conserves product since valve opening is proportional to overpressure. Noise is reduced since the valve only opens fully when required.
SOFT SEATED	 Soft seats seal tight to conserve product and minimize valve wear which improves reliability.
TOP ENTRY	 Reduces maintenance costs since the valve can be completely serviced without removal from its mounting.
CHOICE OF ALUMINUM, CARBON STEEL, STAINLESS STEEL, OR SPECIAL MATERIALS FOR THE MAIN BODY.	 Wide range of materials to meet most corrosive media and temperature applications at the lowest possible cost.
SIZES 2" THROUGH 12"	 There is a size to meet your relieving capacity requirements without the need of expensive oversizing.
HIGH CAPACITY DESIGN	 Groth pilot operated valves have more capacity for your money.
PRESSURE SETTINGS	 Setting range covers all atmospheric and low pressure storage tanks. + Requires 1402 Pilot for minimum settings
VACUUM SETTINGS 1/2 OZ. T0 12 PSI	Wide setting range to meet your design requirements.Direct Acting or Pilot Operated Vacuum relief available.

OPERATION

The pilot operated valve is a self-contained system which does not require any external power or pressure source. The pilot valve, using system medium and pressure, automatically controls the actuator pressure to either open or close the main valve depending on the pressure setting of the pilot vs. the actual system pressures.

System medium and pressure is sensed at the pickup fitting just above the inlet flange. In the case of remote sensing, the pickup point is directly on the vessel and usually close to the valve inlet. The medium and pressure is then channeled to the pilot inlet and is redistributed to the sense chamber and to the actuator.


Under normal system operating conditions, the same pressure is acting downward against the actuator and upwards against the seat pallet. Since the actuator has a larger area than the seat pallet, the net force is downward which will press the pallet against the seat and thus keep the main valve closed. While the pilot and main valve are closed, there is no bleed to the atmosphere.

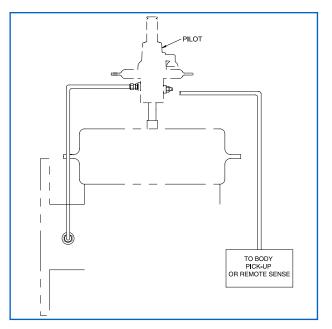
When the system pressure rises to the pilot set point due to an over-pressure condition, the upward force in the pilot sense chamber will overcome the downward spring force to lift the pilot stem. As the stem lifts, it opens the pilot seat to allow flow through the pilot and out to the atmosphere. (In applications where nothing is permitted to discharge directly into the atmosphere, the pilot discharge may be plumbed to the main valve outlet for channeling to a collection header. Notify the vendor if this is the situation in


case compensating adjustments need to be made.) The flow through the pilot and adjustable orifice will cause a pressure drop downstream of the orifice which in turn causes the pressure in the actuator to drop. When the actuator pressure decreases to a point where the upward force on the seat pallet is greater than the downward force of the actuator, the main valve will open. The amount the main valve opens depends on the system overpressure. The greater the overpressure, the wider the main valve opens, until full open is obtained at approximately 10% over-pressure.

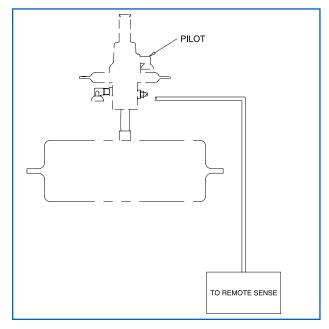
After the excess pressure has been relieved and the system pressure is again below the set point of the pilot, the valve will return to its normal closed position as described in Figure 1.

CONFIGURATIONS

FIELD TEST CONNECTION (Backflow Prevention Included)



MANUAL OR REMOTE BLOWDOWN


MODEL 1900 CHECK VALVE

The 1900 Check Valve can also be used in non-relief valve applications such as for corrosive service or low cracking pressure.

- 316 SS Body, Cover and Fasteners
- 0.25" WC Cracking Pressure
- Teflon^{®1} film & Viton[®] or Kalrez[®] O-Ring
- 1/4" NPT(F) Connections (straight through body)

PILOT DISCHARGE TUBED TO MAIN VALVE OUTLET

Remote Pickup for Pilot

SIZING TABLES

Tables are provided to allow you to select the proper size valve for your application. It is suggested that API Standard 2000 be utilized to obtain the required flow capacity.

TABLE I Model 1400/1430

TABLE II

and 60°F

Model 1420/1460 SCFM Air Capacity @10% Over-pressure

SCFM Air Capacity @10% Over-pressure and 60°F

Pressure		VALV	E SIZE (0	ORIFICE	SIZE)		
Setting psig	2" (2.976 in²)	3" (7.013 in²)	4" (12.35 in²)	6" (28.51 in²)	8" (49.65 in²)	10" (78.47 in²)	12" (112.7 in²)
0.07	84.7	200	353	814	1418	2241	3218
0.2	141	333	587	1355	2360	3730	5356
0.4	207	488	860	1985	3457	5464	7847
0.6	259	610	1075	2481	4321	6830	9809
0.8	303	715	1259	2907	5062	8000	11490
1.0	343	808	1423	3286	5722	9040	12989
1.2	379	893	1573	3632	6324	9995	14355
1.4	413	972	1712	3952	6882	10877	15621
1.6	444	1046	1842	4252	7404	11702	16807
1.8	473	1115	1964	4535	7897	12481	17925
2.0	501	1182	2081	4803	8365	13221	18988
3.0	625	1474	2595	5992	10434	16491	23685
4.0	731	1723	3034	7004	12197	19277	27685
5.0	825	1943	3422	7900	13759	21745	31231
6.0	901	2124	3741	8636	15039	23769	34137
7.0	971	2289	4030	9304	16203	25608	36778
8.0	1036	2440	4298	9921	17278	27307	39218
9.0	1096	2582	4547	10497	18280	28891	41494
10.0	1152	2715	4781	11037	19222	30379	43631
11.0	1205	2841	5002	11548	20111	31785	45650
12.0	1256	2960	5212	12033	20955	33119	47566
13.0	1304	3074	5413	12495	21760	34390	49392
14.0	1350	3182	5604	12937	22529	35606	51138
15.0	1395	3286	5787	13360	23266	36772	52812

-		V	ALVE SI	ZE (ORIF	ICE SIZE	.)	
Pressure Setting psig	2" (2.976 in ²)	3" (7.013 in²)	4" (12.35 in²)	6" (28.51 in²)	8" (49.65 in²)	10" (78.47 in²)	12" (112.7 in²)
0.07 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 3.0 4.0 5.0	76.9 128 184 228 265 299 329 357 384 409 433 540 633 717	181 302 434 537 625 704 775 842 904 964 1020 1272 1491 1690	320 532 764 946 1101 1239 1366 1483 1593 1697 1796 2240 2626 2976	737 1227 1764 2183 2542 2861 3152 3423 3677 3917 4146 5171 6062 6869	1268 2111 3035 3756 4373 4922 5432 5889 6325 6739 7133 8896 10429 11818	1980 3296 4738 5864 6826 7683 8466 9193 9875 10520 11136 13887 16281 18449	2809 4675 6720 8318 9682 10898 12008 13039 14006 14922 15795 19697 23092 26168
6.0 7.0 8.0 9.0 11.0 12.0 13.0 14.0 15.0	795 869 939 1006 1071 1134 1195 1254 1308 1351	1874 2047 2212 2371 2523 2672 2816 2956 3082 3183	3300 3605 3896 4175 4444 4705 4958 5177 5360 5535	7618 8323 8994 9638 10259 10860 11363 11799 12216 12616	13106 14319 15474 16581 17649 18684 19535 20284 21001 21689	20460 22354 24156 25885 27552 29168 30473 31642 32761 33834	29021 31707 34263 36715 39080 41372 43189 44847 46433 47953

	15.0	1351	3183	5535	12616	21689	33834	
	Vacuum			V	ALVE SIZ	Έ		
ABLE III Capacity	Setting In. WC	2"	3"	4"	6"	8"	10"	
400/1420 ir Capacity r-pressure and 60°F	0.87 1.00 1.73 2.00 3.00 4.00 6.00 8.00 10.00	78 84 111 119 145 167 203 233 260	172 183 242 260 317 365 445 510 567	267 287 377 403 493 568 692 795 883	578 622 817 1070 1233 1502 1717 1917	1008 1083 1422 1527 1867 2150 2617 3000 3333	1518 1632 2150 2300 2817 3233 3950 4533 5033	

TABLE II Vacuum Flow Capacity Model 1400/1420 SCFM Air Capacity @100% Over-pressure

For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

12"

3967 4567

5567 6400

7117

SIZING TABLES

Tables are provided to allow you to select the proper size valve for your application. It is suggested that API Standard 2000 be utilized to obtain the required flow capacity.

TABLE I Model 1400/1430

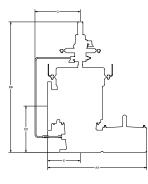
NCMM Air Capacity @100% Over-pressure and 0° C

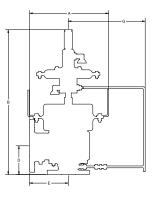
Pressure		V		ZE (ORIF	ICE SIZE	i)	
Setting	2"	3"	4"	6"	8"	10"	12"
mbarg	(2.976 in²)	(7.013 in²)	(12.35 in²)	(28.51 in²)	(49.65 in²)	(78.47 in²)	(112.7 in²)
5 10 20 30 40 50 100 150 200 250 300 250 300 400 450 550 600 650	2.47 3.50 5.13 6.42 7.51 8.51 12.1 15.0 17.4 19.5 21.5 23.7 25.6 27.4 28.8 30.2 31.5 32.7	5.84 8.26 12.1 15.1 17.7 20.0 28.6 35.3 41.0 46.1 50.8 55.8 60.4 64.6 68.0 71.2 74.1 77.0	10.3 14.6 21.3 26.7 31.2 35.3 50.4 62.1 72.2 81.2 89.4 98.3 106 114 120 125 131 136	23.8 33.6 49.2 61.5 72.1 81.5 116 143 167 187 206 227 246 263 276 289 301 313	41.4 58.5 85.7 107 126 142 202 250 290 326 359 395 428 458 458 458 458 458 458 458 458 458 45	65.4 92.5 135 169 198 224 320 395 459 516 568 625 676 723 761 796 829 861	93.9 133 195 243 285 322 460 567 659 741 816 897 971 1039 1093 1143 1191 1237
700	33.8	79.7	140	324	564	891	1280
750	34.9	82.3	145	334	582	920	1322
800	36.0	84.8	149	345	600	948	1362
850	37.0	87.2	153	354	617	975	1401
900	38.0	89.5	158	364	633	1001	1438
1000	39.9	94.1	166	383	666	1053	1512

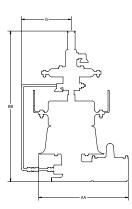
Pressure		V	ALVE SI	ZE (ORIF	ICE SIZE)	
Setting mbarg	2" (2.976 in²)	3" (7.013 in²)	4" (12.35 in²)	6" (28.51 in²)	8" (49.65 in²)	10" (78.47 in²)	12" (112.7 in²)
5 10 20 30 40 50 100 250 200 250 300 250 300 350 400 450 550 600 650 700 750	2.24 3.17 4.56 5.65 6.57 7.41 10.5 13.0 15.1 16.9 18.6 20.5 22.2 23.9 25.5 27.0 28.5 30.0 31.4 32.8	5.30 7.49 10.8 13.3 15.5 17.5 24.8 30.6 35.4 39.8 43.8 43.8 48.2 52.3 56.2 60.0 63.6 67.2 70.7 74.0 77.4	9.33 13.2 18.9 23.5 27.3 30.7 43.7 53.8 62.5 70.1 77.1 84.8 92.1 99.0 106 112 118 124 130 136	21.5 30.4 43.7 54.1 63.0 70.9 101 124 144 162 178 196 213 229 244 259 244 259 244 259 244 259 244 314	37.0 52.3 75.3 93.1 108 122 174 214 248 279 306 337 366 393 420 445 470 494 518 541	57.8 81.7 117 145 169 191 271 334 387 435 478 526 571 614 655 695 734 771 808 845	82.0 116 167 206 240 270 384 473 549 617 678 746 810 871 929 986 1041 1094 1147 1198
800 850 900 1000	34.2 35.6 36.8 38.7	80.6 83.8 86.7 91.1	142 147 151 158	325 335 343 361	559 575 591 621	873 897 921 969	1237 1272 1306 1373

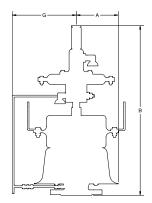
TABLE IIModel 1420/1460

NCMM Air Capacity @100% Over-pressure and 0° C


TABLE III Vacuum Flow Capacity Model 1400/1420 NCMM Air Capacity


@100% Over-pressure and 0° C


Vacuum			VALVE SIZE						
Setting mbarg	2"	3"	4"	6"	8"	10"	12"		
2 3 4 5 7 10 15 20 25	2.20 2.69 3.10 3.46 4.09 4.87 5.93 6.81 7.58	4.80 5.88 6.77 7.57 8.93 10.6 13.0 14.9 16.6	7.48 9.15 10.5 11.8 13.9 16.6 20.2 23.2 25.8	16.2 19.9 22.9 25.6 30.2 36.0 43.8 50.3 55.9	28.3 34.6 39.9 44.6 52.6 62.7 76.4 87.7 97.5	42.6 52.1 60.1 79.2 94.4 115 132 147	60.2 73.7 84.9 94.9 112 133 163 187 208		


For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.

SPECIFICATIONS

Model 1420

Model 1460

Model 1430

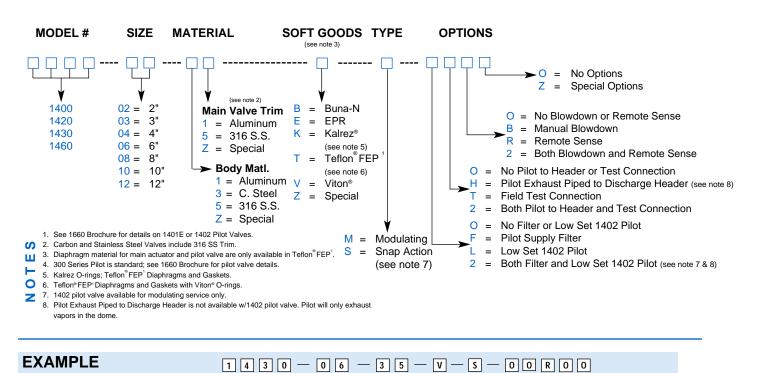
MODELS 1420 and 1460

Specifications subject to change without notice. Certified dimensions available on request.

	IZE	S	TANDARD	SETTING	S									APPROX.
J	122	PRES	SURE	VAC	UUM	A	В	D	E	G	AA	BB	DD	SHIP WT. LBS
INLET	OUT.	MAX.	**MIN.	MAX.	MIN.	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	*
2" (50 mm)	3" (80 mm)					10½" (267)	23½" (597)	4%" (105)	5½" (140)	7" (178)	14½" (368)	26½" (673)	7" (178)	35 (16 кс)
3" (80 mm)	4" (100 mm)					11½" (292)	25½" (648)	5" (127)	6" (152)	7½" (191)	18" (457)	28¾" (730)	8½" (206)	40 (18 кс)
4" (100 mm)	6" (150 mm)	<u>ଓ ତ</u> ି	Ú.	<u>ს</u> ე	u s	12½" (318)	28½" (724)	6½" (165)	6½" (165)	8" (203)	19¼" (489)	31½" (800)	9½" (241)	50 (23 KG)
6" (150 mm)	8" (200 mm)	5 PS 035 Ba	≤ <mark>17.5</mark>	2 PSIG . ^{828 Barg)}	.5 02/in (2.16 mb) See TPD3	16¾" (425)	32¼" (819)	8½" (216)	8½" (216)	10¼" (260)	26½" (673)	36½" (927)	12¾" (324)	70 (32 KG)
8" (200 mm)	10" (250 mm)	15	~		0	20½" (521)	36¾" (933)	9¾" (248)	10¾" (273)	11¾" (298)	32½" (826)	42¼" (1073)	15¼" (387)	90 (41 KG)
10" (250 mm)	12" (300 mm)					20¼" (616)	38¾" (984)	10¼" (260)	12½" (318)	13¾" (349)	37¾" (959)	46½" (1181)	18" (457)	125 (57 кс)
12" (300 mm)	14" (350 mm)					27¾" (705)	42¾" (1086)	11" (279)	15" (381)	14¾" (375)	42¾" (1086)	52½" (1334)	20 ⁵ / ₈ " (524)	150 (69 кс)

*Approximate weight of aluminum Model 1420. **2" WC minimum set with 1402 Pilot (see 1660 Brochure).

MODELS 1400 and 1430


Specifications subject to change without notice. Certified dimensions available on request.

SIZE		STANDARD	SETTINGS							APPROX.
OILL	PRES	SURE	VACUUM		A	В	G	AA	BB	SHIP WT. LBS
	MAX.	**MIN.	MAX.	MIN.	(METRIC)	(METRIC)	(METRIC)	(METRIC)	(METRIC)	*
2" (50 mm)					4¾" (121)	25½" (648)	7" (178)	13½" (178)	27½" (699)	30 (14 KG)
3" (80 mm)					5¾" (146)	26½" (673)	7¾" (197)	17¾" (451)	29" (737)	35 (16 KG)
4" (100 mm)	<u>D</u> 0	U.ª	୰ଡ଼	in ²	6½" (165)	27½" (699)	8½" (216)	19½" (495)	30¼" (768)	40 (18 KG)
6" (150 mm)	15 PSIG (1.035 BarG)	7" W.	12 PSIG (828 BarG)	0.5 oz/in ² (2.16 mb) See TPD3	8½" (216)	29½" (749)	10½" (267)	26½" (673)	34" (864)	50 (23 KG)
8" (200 mm)	~= =		<u> </u>	0.0	9¾" (248)	32½" (826)	11¾" (298)	31½" (800)	40" (1016)	65 (30 KG)
10" (250 mm)					11¾" (298)	34½" (876)	13¾" (349)	37" (940)	43¾" (1111)	95 (43 KG)
12" (300 mm)					12¾" (324)	36½" (927)	14¾" (375)	40½" (1029)	48" (1219)	125 (57 KG)

*Approximate weight of aluminum Model 1400. **2" WC minimum set with 1402 Pilot (see 1660 Brochure).

HOW TO ORDER

For easy ordering, select proper model numbers

Indicates a 6" Model 1430 with carbon steel body and 316 SS trim using viton soft goods, snap action with remote pilot pickup and no options.

¹ Teflon is a registered trademark of DuPont Corporation.

PILOT OPERATED VALVES Series 1500

Model 1500 Air Operated Pressure / Vacuum Relief Valves Relief to atmosphere design

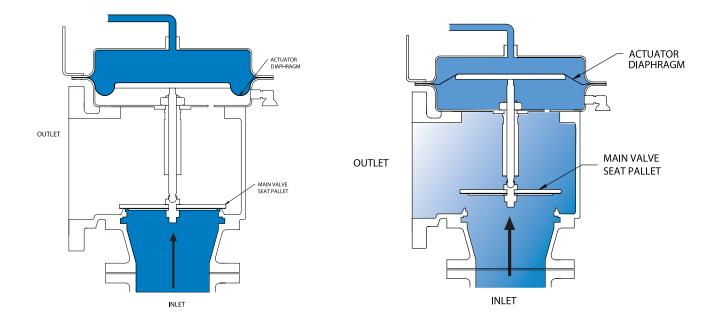
Model 1530 Air Operated Pressure Relief Valve Relief to atmosphere design

Model 1520 Air Operated Pressure / Vacuum Relief Valves Pipe-away design

Model 1560 Air Operated Pressure Relief Valves Pipe-away design

- Severe service application
- Premium tight seal
- Snap Acting
- Instrument air operated

SERIES 1500 Air operated valves for atmospheric and low pressure storage tanks


FEATURES	BENEFITS
AIR OPERATED	 Use instrument air or N₂ Non-corrosive and non-pluggng Lower profile and weight than spring operated models for high settings. Remote pilot sensing from pressure switch. Remote or manual blowdown available.
EXTRA TIGHT SEAL	Main valve remains tight to set pressure.
FULL FLOW	Full open at set point
SNAP ACTION	Snap acting for immediate efficiency
SOFT SEATED	 Soft seats seal tight to conserve product and minimize valve wear which improves reliability.
TOP ENTRY	 Reduces maintenance costs since the valve can be completely serviced without removal from its mounting.
CHOICE OF Aluminum, Carbon Steel, Fiberglass (FRP), or special materials for the main body.	Wide range of materials to meet most corrosive media and temperature applications at the lowest possible cost.
SIZES 2" THROUGH 12"	 There is a size to meet your relieving capacity requirements without the need of expensive oversizing.
HIGH CAPACITY DESIGN	 Groth air pilot operated valves have higher capacity, size for size, than most other relief valves. You get more capacity for your money.
PRESSURE SETTINGS 5" W.C. TO 15 PSIG	 Setting range covers all atmospheric and low pressure storage tanks.
VACUUM SETTINGS 1/2 OZ. T0 12 PSI (Model 1500 and 1520 ONLY)	Wide setting range to meet your design requirements.Weight or spring loaded valve.

Air operated valves are used to replace weight loaded, spring loaded and pilot operated valves in severe application where polymerization and crystallization may take place and plug as well as corrode the control orifices. The air operated valve increases valve efficiency and reduces evaporation losses. the pressure switch coupled with a solenoid valve and using plant instrument air instead of corrosive product vapor provides a bubble tight seal in the valve. additionally, the use of clean air greatly reduces maintenance time when compared with the pilot operated valve. By using the air operated valve, remote sensing is provided by the pressure switch. This valve

provides greater conservation due to minimum product loss which in turn add to the profits at the bottom line.

The Groth 1500 Series group provides safe, dependable and accurate low pressure and/or vacuum on your storage tank. a range of pressure and vacuum requirements may be easily set. full flow is obtainable at set point and the snap acting feature provides immediate efficiency. This reduces the requirement for large overpressure and saves product, translating into profit. the standard valve may incorporate a vacuum breaker when desired.

OPERATION

The 1500 Series air operated valve is available in five basic models: the 1500, 1520, 1530, 1560 and 1580. the 1500 and 1520 are combination pressure/vacuum valves. The 1500 discharges to the atmosphere and 1520 has an outlet flange for pipe-away applications. The 1530 is a pressure only valve that discharges to atmosphere. The 1560 may be used for pressure or vacuum for pipe-away applications. All valves are held in the closed position by low pressure plant air. When the air pressure is removed the valve is forced open by the process pressure or vacuum. Full open position is achieved as low as 5" WC pressure or vacuum in some cases.

The system is composed of the air operated valve, a pressure switch and a three-way solenoid valve. The pressure switch is attached to the tank or vessel and connected to the solenoid valve which controls the instrument air or N₂ line. This is the normal configuration but if desired or necessary more than one switch or solenoid valve may be used. Placement on the tank for the pressure switch and placement of the solenoid valve may be located to meet your requirements.

The pressure switch is adjusted to the desired valve set point. when the pressure in the tank reaches the set point a signal is sent to the solenoid valve which is de-energized and the plant air is cut off and exhausted. This releases the pressure on the valve actuator allowing the main valve seat pallet to move up thereby venting the tank.

In a similar manner the reverse takes place when the set point pressure is reached when the valve is open. the pressure switch energizes the solenoid valve which is then energized to open. This opening permits the line to open and plant instrument air enters the actuator forcing the main valve seat pallet to move down closing the valve which eliminates the tank vapor flow.

SIZING TABLES

Tables are provided to allow you to select the proper size valve for your application. It is suggested that API Standard 2000 be utilized to obtain the required flow capacity.

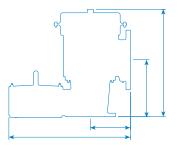
TABLE I Model 1500/1530

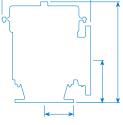
SCFM Air Capacity @10% Over-pressure and 60°F

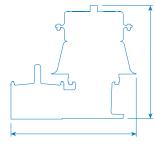
Pressure		VALV	E SIZE (0	ORIFICE	SIZE)		
Setting psig	2" (2.976 in²)	3" (7.013 in²)	4" (12.35 in²)	6" (28.51 in²)	8" (49.65 in²)	10" (78.47 in²)	12" (112.7 in²)
0.2	141	333	587	1355	2360	3730	5356
0.4	207	488	860	1985	3457	5464	7847
0.6	259	610	1075	2481	4321	6830	9809
0.8	303	715	1259	2907	5062	8000	11490
1.0	343	808	1423	3286	5722	9040	12989
1.2	379	893	1573	3632	6324	9995	14355
1.4	413	972	1712	3952	6882	10877	15621
1.6	444	1046	1842	4252	7404	11702	16807
1.8	473	1115	1964	4535	7897	12481	17925
2.0	501	1182	2081	4803	8365	13221	18988
3.0	625	1474	2595	5992	10434	16491	23685
4.0	731	1723	3034	7004	12197	19277	27685
5.0	825	1943	3422	7900	13759	21745	31231
6.0	901	2124	3741	8636	15039	23769	34137
7.0	971	2289	4030	9304	16203	25608	36778
8.0	1036	2440	4298	9921	17278	27307	39218
9.0	1096	2582	4547	10497	18280	28891	41494
10.0	1152	2715	4781	11037	19222	30379	43631
11.0	1205	2841	5002	11548	20111	31785	45650
12.0	1256	2960	5212	12033	20955	33119	47566
13.0	1304	3074	5413	12495	21760	34390	49392
14.0	1350	3182	5604	12937	22529	35606	51138
15.0	1395	3286	5787	13360	23266	36772	52812

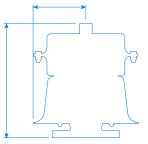
		V		7F (ORIF	ICE SIZE	')	
Pressure		•				·)	
Setting psig	2" (2.976 in²)	3" (7.013 in²)	4" (12.35 in²)	6" (28.51 in²)	8" (49.65 in²)	10" (78.47 in²)	12" (112.7 in²)
0.2	128	302	532	1227	2111	3296	4675
0.4	184	434	764	1764	3035	4738	6720
0.6	228	537	946	2183	3756	5864	8318
0.8	265	625	1101	2542	4373	6826	9682
1.0	299	704	1239	2861	4922	7683	10898
1.2	329	775	1366	3152	5432	8466	12008
1.4	357	842	1483	3423	5889	9193	13039
1.6	384	904	1593	3677	6325	9875	14006
1.8	409	964	1697	3917	6739	10520	14922
2.0	433	1020	1796	4146	7133	11136	15795
3.0	540	1272	2240	5171	8896	13887	19697
4.0	633	1491	2626	6062	10429	16281	23092
5.0	717	1690	2976	6869	11818	18449	26168
6.0	795	1874	3300	7618	13106	20460	29021
7.0	869	2047	3605	8323	14319	22354	31707
8.0	939	2212	3896	8994	15474	24156	34263
9.0	1006	2371	4175	9638	16581	25885	36715
10.0	1071	2523	4444	10259	17649	27552	39080
11.0	1134	2672	4705	10860	18684	29168	41372
12.0	1195	2816	4958	11363	19535	30473	43189
13.0	1254	2956	5177	11799	20284	31642	44847
14.0	1308	3082	5360	12216	21001	32761	46433
15.0	1351	3183	5535	12616	21689	33834	47953

TABLE IIModel 1520/1560


SCFM Air Capacity @10% Over-pressure and 60°F


Vacuum	2" 3" 4" 6" 8" 10"									
Setting In. WC	2"	3"	4"	6"	8"	10"	12"			
$\begin{array}{c} 0.87 \\ 1.00 \\ 1.73 \\ 2.00 \\ 3.00 \\ 4.00 \\ 6.00 \\ 8.00 \\ 10.00 \end{array}$	78 84 111 119 145 167 203 233 260	172 183 242 260 317 365 445 510 567	267 287 377 403 568 692 795 883	578 622 817 1070 1233 1502 1717 1917	1008 1083 1422 1527 1867 2150 2617 3000 3333	1518 1632 2150 2300 2817 3233 3950 4533 5033	2150 2300 3033 3250 3967 4567 5567 6400 7117			


For an equivalent size fiberglass valve, reduce tabulated capacities by 32%.


TABLE III Vacuum Flow Capacity Model 1500/1520 SCFM Air Capacity @100% Over-pressure and 60°F

SPECIFICATIONS

Model 1520

Model 1560

Model 1500

Model 1530

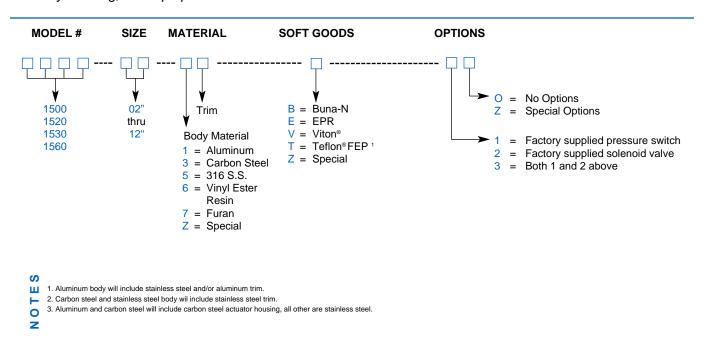
MODELS 1520 and 1560

Specifications subject to change without notice. Certified dimensions available on request.

si	SIZE		STANDARD SETTINGS									APPROX.	
SIZE		PRESSURE		VACUUM		A	В	D	E	AA	BB	DD	SHIP WT. LBS
INLET	OUT.	MAX.	MIN.	MAX.	MIN.	(metric)	(metric)	(metric)	(metric)	(mm)	(mm)	(mm)	*
2" (51 mm)	3" (76 mm)			10 oz/in ² (43.9 gm/cm ²)		11 ^{1/2} " (292)	14 ^{1/2} " (368)	4 ^{1/8} " (105)	5 ^{1/2} " (140)	14 ^{1/2} " (368)	17 ^{1/2} " (673)	7" (178)	35 (13.75 kg)
3" (76 mm)	4" (102 mm)			12 oz/in ² (52.7 gm/cm ²)		12 ^{1/2} " (318)	16 ^{1/2} " (420)	5" (127)	6" (152)	18" (457)	19 ^{3/4} " (502)	8 ^{1/8} " (206)	35 (15.75 kg)
4" (102 mm)	6" (152 mm)	ୢ୷ୄ	Ĵ, J	12 oz/in ² (52.7 gm/cm ²)	in ²	13 ^{3/8} " (340)	19 ^{1/2} " (496)	6 ^{1/2} " (165)	6 ^{1/2} " (165)	19 ^{1/4} " (489)	22 ^{1/2} " (572)	9 ^{1/2} " (241)	45 (20.75 kg)
6" (152 mm)	8" (203 mm)	15 PSI (1.05 kg/ci	, OZ/in .2 gm/cm ³	14 oz/in ² (61.5 gm/cm ²)	2 oz/iŋ² 2 gm/cm)	17 ^{3/4} " (451)	23 ^{1/4} " (591)	8 ^{1/2} " (216)	8 ^{1/2} " (216)	26 ^{1/2} " (673)	27 ^{1/2} " (699)	12 ^{3/4} " (324)	65 (29.75 kg)
8" (203 mm)	10" (254 mm)	1:	က္ရွိ	16 oz/in ² (70.3 gm/cm ²)	1/2	21 ^{1/2} " (546)	27 ^{3/4} " (705)	9 ^{3/4} " (248)	10 ^{3/4} " (273)	32 ^{1/2} " (826)	33 ^{1/4} " (845)	15 ^{1/4} " (387)	85 (38.75 kg)
10" (254 mm)	12" (305 mm)			16 oz/in ² (70.3 gm/cm ²)		25 ^{1/4} " (641)	29¾" (756)	10¼" (260)	12 ^{1/2} " (318)	37 ^{3/4} " (959)	37 ^{1/2} " (953)	18" (457)	120 (54.75 kg)
12" (305 mm)	14" (356 mm)			16 oz/in ² (70.3 gm/cm ²)		28 ^{3/4} " (730)	33¾" (858)	11" (279)	15" (381)	42 ^{3/4} " (1086)	43 ^{1/2} " (1106)	20 ^{5/8} " (524)	145 (66.25 kg)

*Approximate weight of aluminum Model 1520.

MODELS 1500 and 1530


Specifications subject to change without notice. Certified dimensions available on request.

SIZE	STANDARD SETTINGS						APPROX.		
0.22	PRES	SURE	JRE VACU		A	В	AA	BB	SHIP WT. LBS
	MAX.	MIN.	MAX.	MIN.	(METRIC)	(METRIC)	(METRIC)	(METRIC)	*
2" (51 mm)			10 oz/in ² (43.9 gm/cm ²)		4 ^{3/4} " (121)	16 ^{1/2} " (420)	13 ^{1/2} " (343)	18 ^{1/2} " (471)	25 (11.75 kg)
3" (76 mm)			12 oz/in ² (52.7 gm/cm ²)		5 ^{3/4} " (146)	17 ^{3/4} " (445)	17 ^{3/4} " (451)	20" (508)	30 (13.75 kg)
4" (102 mm)	<u>ଅ</u> ନ୍ତି	₽⊐	12 oz/in ² (52.7 gm/cm ²)	in ²	6 ^{1/2} " (165)	18 ^{1/2} " (471)	19 ^{1/2} " (495)	21 ^{1/4} " (540)	35 (15.75 kg)
6" (152 mm)	15 PSIG (1.05 kg/cm)	3 oz/in ² (.17.5 mb)	14 oz/in ² (61.5 gm/cm ²)	/2 OZ/in² 2.2 gm/cm [°] See TPD3	8 ^{1/2} " (216)	20 ^{1/2} " (521)	26 ^{1/2} " (673)	25" (636)	45 (20.75 kg)
8" (203 mm)	1.5		16 oz/in ² (70.3 gm/cm ²)	1/2 (22) 8⊞	9 ^{3/4} " (248)	23 ^{1/2} " (598)	31 ^{1/2} " (800)	31" (788)	60 (27.75 kg)
10" (250 mm)			16 oz/in ² (70.3 gm/cm ²)		11¾" (298)	25 ^{1/2} " (648)	37" (940)	34 ^{3/4} " (833)	90 (40.75 kg)
12" (254 mm)			16 oz/in ² (70.3 gm/cm ²)		12¾" (324)	27 ^{1/2} " (699)	40 ^{1/2} " (1029)	39" (991)	120 (54.75 kg)

*Approximate weight of aluminum Model 1500.

HOW TO ORDER

For easy ordering, select proper model numbers

EXAMPLE

1530-06-35-V-00

Indicates a 6" Model 1530 with carbon steel body and 316 SS trim using Viton® soft goods with factory supplied pressure switch and solenoid.

¹ Teflon is a registered trademark of DuPont Corporation.

Innovative **Global** Solutions for Low Pressure Systems Protection

13650 N. Promenade Blvd. Stafford, Texas 77477

tel (281) 295-6800

fax (281) 295-6999

www.grothcorp.com

SECTION 7

BLANKET GAS REGULATORS

Series 3011 Blanket Gas Regulators •

BLANKET GAS REGULATORS

Series 3011

Patented US 5,238,021 and 5,931,188

FEATURES

- Balanced chambers for accurate performance
- Single stage regulation 200 PSI to 0.5"WC

3011H cutaway shown

- Bubble tight shut-off
- Setting range from 0.5"WC to 8.0"WC
- All stainless steel construction
- Compact design

3011 SERIES

Both the 3011L and 3011H gas blanket regulators provide a controlled gas environment in storage tanks for the following applications.

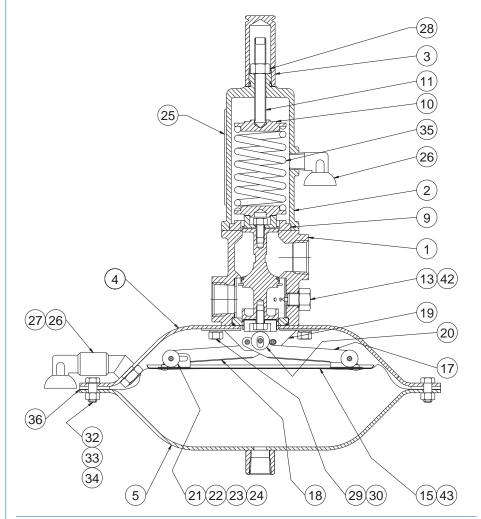
- Refineries
- Chemical & Petrochemical Plants
- Liquid Bulk Storage Terminals
- Pulp & Paper Plants

The blanket gas is controlled at a defined pressue (or vacuum) level and is used to exclude air from the tank. This is done for the following reasons.

- Elimination of a potentially flammable mixture by maintaining either an inert or fuel rich environment.
- Minimize tank corrosion.
- Prevent product contamination.
- Reduce hydrocarbon emissions during normal breathing.
- Prevent product evaporation.

Groth gas blanket regulators have the following features:

- Direct acting, modulating valves with a patented force multiplying linkage.
- Balanced forces acting on piston (setting is not affected by supply pressure.)
- Compact size and weight.
- Setting range is from 0.5" WC 8.0" WC (Consult factory for other settings)
- NPT (F) or ANSI flange connections.
- Wide selection of elastomer seal materials.
- Adjustable flow capacity (5-100%)
- Available for vacuum service (consult factory)


Benefits of storage tank blanketing are recognized by the following government regulations and industrial standards.

- API Standard 2000
- EPA Publication AP-42
- NFPA 69 Standard on Explosion Prevention Systems
- OSHA Part 1910.106

SPECIFICATIONS

Please note when spring ranges overlap, select the lighter spring

MODEL #	SPRING RANGE	MAX S PSI	SUPPLY BAR		TTING MBAR		ETTING MBAR	
3011L pressure service	3	200	13.8	0.5	1.2	0.7	1.7	
weight 33lb / 15kg	4	200	13.8	0.7	1.7	1.0	2.5	
MAWP 2 PSI / .14 BAR	5	200	13.8	1.0	2.5	2.0	5.0	
	1	50	3.4	0.5	1.2	1.0	2.5	
3011H pressure service	2	100	6.9	1.0	2.5	1.5	3.7	
weight 21lb / 10kg	3	150	10.3	1.5	3.7	2.0	5.0	
MAWP	4	200	13.8	2.0	5.0	3.5	8.7	
8 PSI / 0.5 BAR	5	200	13.8	3.5	8.7	6.5	16.2	
	6	200	13.8	6.5	16.2	8.0	20.0	

Figure 1: Cross-section of 3011H

MODEL SELECTION

Use 3011H when set pressure range overlaps.

SET	SUPPLY PRESSURE (PSI)					
PRESSURE IN WC	5- 50	51- 100	101- 150	151- 200		
0.5 - 1.0			0.04			
1.0 - 1.5			301	1L		
1.5 - 2.0		20441				
2.0 - 8.0	3011H					

SET	SUPPLY PRESSURE (BAR)					
PRESSURE MBAR	0.3- 3.4	3.5- 6.9	7.0- 10.3	10.4- 13.8		
1.2 - 2.5						
2.5 - 3.7			301	1L		
3.7 - 5.0	201411					
5.0 - 20	3011H					

ASSEMBLY

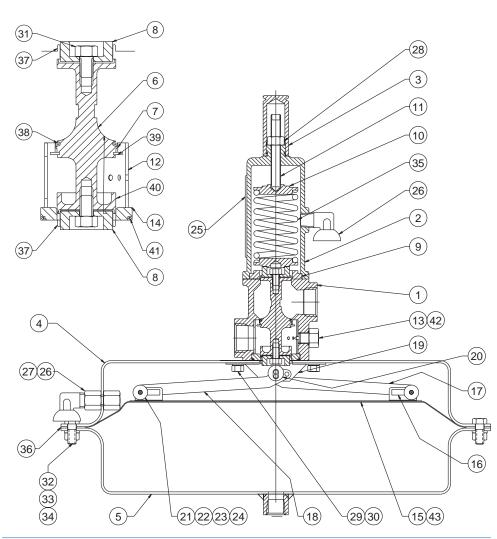
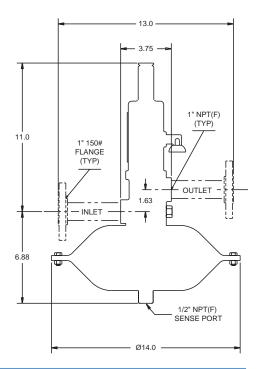


Figure 2: Cross-section of 3011L

FLOW CAPACITY

PRESSURE	CARBON	DIOXIDE
BAR	SCFH	NCMH
0.34	4600	130
0.69	7100	201
1.03	9200	261
1.38	11200	317
2.07	15100	428
2.76	18800	533
3.45	22500	637
4.14	26000	737
5.52	33000	935
6.90	40000	1133
8.28	47000	1331
9.66	53900	1527
11.0	60900	1725
12.4	67900	1924
13.8	74900	2122
	0.34 0.69 1.03 1.38 2.07 2.76 3.45 4.14 5.52 6.90 8.28 9.66 11.0 12.4	BAR SCFH 0.34 4600 0.69 7100 1.03 9200 1.38 11200 2.07 15100 2.76 18800 3.45 22500 4.14 26000 5.52 33000 6.90 40000 8.28 47000 9.66 53900 11.0 60900 12.4 67900

BILL OF MATERIALS


Item	Name	Material
1	Body	316SS
2	Bonnet, Spring	316SS
3	Cap, Adjustment acrew	316SS
4	Housing, Upper actuator	316SS
5	Housing, Lower actuator	316SS
6	Piston	316SS
7	Retainer, O-Ring piston seat	316SS
8	Retainer, Diaphragm	316SS
9	Adapter, Bonnet	316SS
10	Button, Spring	316SS
11	Screw, Pressure adjustment	316SS
12	Sleeve, Orifice selector	316SS
13	Screw, Sleeve locking	316SS
14	Ring, Piston guide	316SS
15	Plate, Diaphragm support	316SS
16	Bracket, Actuator linkage	316SS
17	Arm, Actuator linkage	316SS
18	Arm, Actuator linkage	316SS
19		316SS
20		Nylon
21	- ,	Nylon
22	Spacer, Roll pin	Tygon®
23	Rivet, Pop	316SS
24	,	316SS
25	Nameplate	316SS
26	Vent	Alum
27		PVC
28	Nut, Hex	316SS
29		316SS
30		316SS
31		316SS
32	Bolt, Hex	316SS
33		316SS
34	-) -	316SS
35	Spring	316SS
SOF	T GOODS KIT	
36	Gasket Actuator	Teflon®FEF

36	Gasket, Actuator	Teflon [®] FEP ¹
37	Diaphragm, Piston	Viton® *
38	O-Ring, Piston seat	Viton® *
39	Ring, Retaining	SS
40	Stop, Lift	SS
41	O-Ring, Guide ring	Viton® *
42	O-Ring,Locking screw	Viton® *
43	Diaphragm, Actuator	Teflon [®] FEP ¹

*See Soft Goods selection for available materials ¹ Teflon is a registered trademark of DuPont Corporation.

Table shows flow capacity for a regulator set at 100% full open. For restricted flow, multiply the table values by the appropriate orifice selection percentage. Unless otherwise specified, the orifice selector sleeve (12) is factory set at 100% capacity.

NITRO	DGEN	NATURAL G	AS 0.6 SG
SCFH	NCMH	SCFH	NCMH
5800	164	7400	210
8800	249	11300	320
11500	326	14600	414
14000	397	17900	507
18900	535	24000	680
23600	669	30000	850
28200	799	35800	1014
32600	924	41500	1176
41300	1170	52600	1490
50100	1419	63700	1805
58800	1666	74800	2119
67500	1912	85900	2433
76300	2161	97000	2748
85000	2408	108100	3062
93700	2654	119200	3377

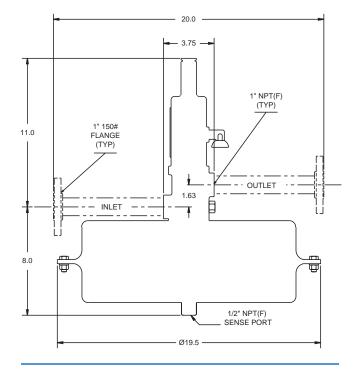
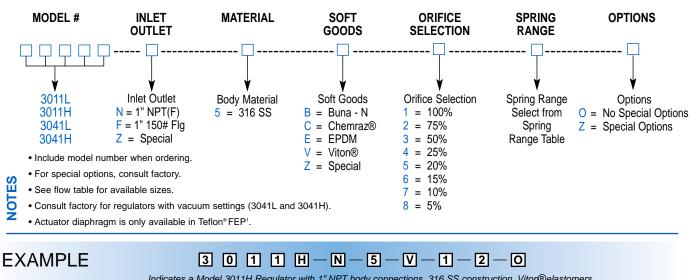



Figure 3: 3011H

Figure 4: 3011L

HOW TO ORDER

For easy ordering, select proper model number

Indicates a Model 3011H Regulator with 1" NPT body connections, 316 SS construction, Vitor®elastomers, full capacity orifice, set pressure range from 1.0" WC to 1.5" WC and no special requirements.

¹ Teflon is a registered trademark of DuPont Corporation.